AI Medical Compendium Journal:
PLoS computational biology

Showing 61 to 70 of 484 articles

Selective consistency of recurrent neural networks induced by plasticity as a mechanism of unsupervised perceptual learning.

PLoS computational biology
Understanding the mechanism by which the brain achieves relatively consistent information processing contrary to its inherent inconsistency in activity is one of the major challenges in neuroscience. Recently, it has been reported that the consistenc...

MAGICAL: A multi-class classifier to predict synthetic lethal and viable interactions using protein-protein interaction network.

PLoS computational biology
Synthetic lethality (SL) and synthetic viability (SV) are commonly studied genetic interactions in the targeted therapy approach in cancer. In SL, inhibiting either of the genes does not affect the cancer cell survival, but inhibiting both leads to a...

Regression convolutional neural network models implicate peripheral immune regulatory variants in the predisposition to Alzheimer's disease.

PLoS computational biology
Alzheimer's disease (AD) involves aggregation of amyloid β and tau, neuron loss, cognitive decline, and neuroinflammatory responses. Both resident microglia and peripheral immune cells have been associated with the immune component of AD. However, th...

Benchmarking the negatives: Effect of negative data generation on the classification of miRNA-mRNA interactions.

PLoS computational biology
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally. In animals, this regulation is achieved via base-pairing with partially complementary sequences on mainly 3' UTR region of messenger RNAs (mRNAs). Comp...

aiSEGcell: User-friendly deep learning-based segmentation of nuclei in transmitted light images.

PLoS computational biology
Segmentation is required to quantify cellular structures in microscopic images. This typically requires their fluorescent labeling. Convolutional neural networks (CNNs) can detect these structures also in only transmitted light images. This eliminate...

iCRBP-LKHA: Large convolutional kernel and hybrid channel-spatial attention for identifying circRNA-RBP interaction sites.

PLoS computational biology
Circular RNAs (circRNAs) play vital roles in transcription and translation. Identification of circRNA-RBP (RNA-binding protein) interaction sites has become a fundamental step in molecular and cell biology. Deep learning (DL)-based methods have been ...

Convolutional neural networks can identify brain interactions involved in decoding spatial auditory attention.

PLoS computational biology
Human listeners have the ability to direct their attention to a single speaker in a multi-talker environment. The neural correlates of selective attention can be decoded from a single trial of electroencephalography (EEG) data. In this study, leverag...

Bird song comparison using deep learning trained from avian perceptual judgments.

PLoS computational biology
Our understanding of bird song, a model system for animal communication and the neurobiology of learning, depends critically on making reliable, validated comparisons between the complex multidimensional syllables that are used in songs. However, mos...

Reliable estimation of tree branch lengths using deep neural networks.

PLoS computational biology
A phylogenetic tree represents hypothesized evolutionary history for a set of taxa. Besides the branching patterns (i.e., tree topology), phylogenies contain information about the evolutionary distances (i.e. branch lengths) between all taxa in the t...

Quantitative drug susceptibility testing for Mycobacterium tuberculosis using unassembled sequencing data and machine learning.

PLoS computational biology
There remains a clinical need for better approaches to rapid drug susceptibility testing in view of the increasing burden of multidrug resistant tuberculosis. Binary susceptibility phenotypes only capture changes in minimum inhibitory concentration w...