Artificial intelligence (AI) is transforming rheumatology research, with a myriad of studies aiming to improve diagnosis, prognosis and treatment prediction, while also showing potential capability to optimise the research workflow, improve drug disc...
OBJECTIVES: We propose and test a framework to detect disease diagnosis using a recent large language model (LLM), Meta's Llama-3-8B, on French-language electronic health record (EHR) documents. Specifically, it focuses on detecting gout ('goutte' in...
OBJECTIVES: In axial spondyloarthritis (axSpA), early diagnosis is crucial, but diagnostic delay remains long and diagnostic criteria do not exist. We aimed to identify a diagnostic model that distinguishes patients with axSpA from patients without a...
OBJECTIVES: To train, test and validate the performance of a convolutional neural network (CNN)-based approach for the automated assessment of bone erosions, osteitis and synovitis in hand MRI of patients with inflammatory arthritis.
OBJECTIVE: This study aims to use a novel technology based on natural language processing (NLP) to extract clinical information from electronic health records (EHRs) to characterise the clinical profile of patients diagnosed with spondyloarthritis (S...
OBJECTIVES: Fibromyalgia is frequently treated with opioids due to limited therapeutic options. Long-term opioid use is associated with several adverse outcomes. Identifying factors associated with long-term opioid use is the first step in developing...
BACKGROUND: The development of standardised methods for ultrasound (US) scanning and evaluation of synovitis activity by the OMERACT-EULAR Synovitis Scoring (OESS) system is a major step forward in the use of US in the diagnosis and monitoring of pat...