Background Developing deep learning models for radiology requires large data sets and substantial computational resources. Data set size limitations can be further exacerbated by distribution shifts, such as rapid changes in patient populations and s...
Background A preoperative CT-based deep learning (DL) prediction model was proposed to estimate disease-free survival in patients with resected lung adenocarcinoma. However, the black-box nature of DL hinders interpretation of its results. Purpose To...
Background To improve myocardial delayed enhancement (MDE) CT, a deep learning (DL)-based post hoc denoising method supervised with averaged MDE CT data was developed. Purpose To assess the image quality of denoised MDE CT images and evaluate their d...
Background A deep learning (DL) model to identify lung cancer screening candidates based on their chest radiographs requires external validation with a recent real-world non-U.S. sample. Purpose To validate the DL model and identify added benefits to...
Background Lumbar spine MRI studies are widely used for back pain assessment. Interpretation involves grading lumbar spinal stenosis, which is repetitive and time consuming. Deep learning (DL) could provide faster and more consistent interpretation. ...
Background Preexisting indexes for predicting the prognosis of chronic obstructive pulmonary disease (COPD) do not use radiologic information and are impractical because they involve complex history assessments or exercise tests. Purpose To develop a...