BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a frequently diagnosed yet treatable condition, provided it is identified early and managed effectively. This study aims to develop an advanced COPD diagnostic model by integrating deep lear...
QUESTION: Severe asthma and COPD exacerbations requiring hospitalization are linked to increased disease morbidity and healthcare costs. We sought to identify Electronic Health Record (EHR) features of severe asthma and COPD exacerbations and evaluat...
BACKGROUND: Air pollution, weather, pollen, and influenza are typical aggravating factors for asthma. Previous studies have identified risk factors using regression-based and ensemble models. However, studies that consider complex relationships and i...
OBJECTIVES: Parametric response mapping (PRM) enables the evaluation of small airway disease (SAD) at the voxel level, but requires both inspiratory and expiratory chest CT scans. We hypothesize that deep learning PRM from inspiratory chest CT scans ...
Interstitial lung diseases (ILDs) are complex and heterogeneous diseases. The use of traditional diagnostic classification in ILD can lead to suboptimal management, which is worsened by not considering the molecular pathways, biological complexity, a...
Micro-computed tomography (µCT)-based imaging plays a key role in monitoring disease progression and response to candidate drugs in various animal models of human disease, but manual image processing is still highly time-consuming and prone to operat...
Idiopathic pulmonary fibrosis, the archetype of pulmonary fibrosis (PF), is a chronic lung disease of a poor prognosis, characterized by progressively worsening of lung function. Although histology is still the gold standard for PF assessment in prec...
BACKGROUND: Severe acute respiratory infections (SARI) are the most common infectious causes of death. Previous work regarding mortality prediction models for SARI using machine learning (ML) algorithms that can be useful for both individual risk str...
BACKGROUND: Spirometry quality assurance is a challenging task across levels of healthcare tiers, especially in primary care. Deep learning may serve as a support tool for enhancing spirometry quality. We aimed to develop a high accuracy and sensitiv...
BACKGROUND: The exact risk assessment is crucial for the management of connective tissue disease-associated interstitial lung disease (CTD-ILD) patients. In the present study, we develop a nomogram to predict 3‑ and 5-year mortality by using machine ...