The aim of this study was to evaluate the reliability and quality of information generated by ChatGPT regarding dental implants and peri-implant phenotypes. A structured questionnaire on these topics was presented to the AI-based chatbot, and its res...
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers known to humans. However, not all patients fare equally poor survival, and a minority of patients even survives advanced disease for months or years. Thus, there is a clinical ...
Almost one in four critically ill patients suffer from intra-abdominal hypertension (IAH). Currently, the gold standard for measuring intra-abdominal pressure (IAP) is via the bladder. Measurement of IAP is important to identify IAH early and thus im...
In the field of clinical neurology, automated detection of epileptic seizures based on electroencephalogram (EEG) signals has the potential to significantly accelerate the diagnosis of epilepsy. This rapid and accurate diagnosis enables doctors to pr...
Predictive models for determining coronavirus disease 2019 (COVID-19) severity have been established; however, the complexity of the interactions among factors limits the use of conventional statistical methods. This study aimed to establish a simple...
Severe Mycoplasma pneumoniae pneumonia (SMPP) poses significant diagnostic challenges due to its clinical features overlapping with those of other common respiratory diseases. This study aims to develop and validate machine learning (ML) models for t...
With the advancement of medical technology, a large amount of complex data on cancers is produced for diagnosing and treating cancers. However, not all this data is useful, as many features are redundant or irrelevant, which can reduce the accuracy o...
This study aims to develop optimal predictive models for perioperative neurocognitive disorders (PND) in hip arthroplasty patients, thereby advancing clinical practice. Data from all hip arthroplasty patients in the MIMIC-IV database were utilized to...
Artificial intelligence (AI) is transforming the landscape of medicine, including surgical science and practice. The evolution of AI from rule-based systems to advanced machine learning and deep learning algorithms has opened new avenues for its appl...
Contrast-enhanced UTE-MRA provides detailed angiographic information but at the cost of prolonged scanning periods, which may impose moving artifacts and affect the promptness of diagnosis and treatment of time-sensitive diseases like stroke. This st...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.