Viruses are widely recognized to be intricately associated with both solid and hematological malignancies in humans. The primary goal of this research is to elucidate the interplay of genes between SARS-CoV-2 infection and lung adenocarcinoma (LUAD),...
BACKGROUND: With the rising incidence of pulmonary nodules (PNs), lung adenocarcinoma in situ (AIS) is a critical early stage of lung cancer, necessitating accurate diagnosis for early intervention. This study applies artificial intelligence (AI) for...
INTRODUCTION: Lung cancer is a leading cause of cancer-related deaths, with its incidence continuing to rise. Chromatin remodeling, a crucial process in gene expression regulation, plays a significant role in the development and progression of malign...
BACKGROUND: The solid pattern is a highly malignant subtype of lung adenocarcinoma. In the current era of transitioning from lobectomy to sublobar resection for the surgical treatment of small lung cancers, preoperative identification of this subtype...
BACKGROUND: Lymph node metastasis (LNM) plays a crucial role in the management of lung cancer; however, the ability of chest computed tomography (CT) imaging to detect LNM status is limited.
The aim of our study was to develop robust diagnostic and prognostic models for lung adenocarcinoma (LUAD) using machine learning (ML) techniques, focusing on early immune infiltration. Feature selection was performed on The Cancer Genome Atlas (TCGA...
Lung adenocarcinoma (LUAD) is a malignancy affecting the respiratory system. Most patients are diagnosed with advanced or metastatic lung cancer due to the fact that most of their clinical symptoms are insidious, resulting in a bleak prognosis. Given...
Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer
Sep 19, 2024
INTRODUCTION: An increasing number of early-stage lung adenocarcinomas (LUAD) are detected as lung nodules. The radiological features related to LUAD progression warrant further investigation. Exploration is required to bridge the gap between radiomi...
BACKGROUND: To design a pulmonary ground-glass nodules (GGN) classification method based on computed tomography (CT) radiomics and machine learning for prediction of invasion in early-stage ground-glass opacity (GGO) pulmonary adenocarcinoma.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.