AIMC Topic: Adult

Clear Filters Showing 2161 to 2170 of 14447 articles

A novel method for assessing cycling movement status: an exploratory study integrating deep learning and signal processing technologies.

BMC medical informatics and decision making
This study proposes a deep learning-based motion assessment method that integrates the pose estimation algorithm (Keypoint RCNN) with signal processing techniques, demonstrating its reliability and effectiveness.The reliability and validity of this m...

Machine learning approaches for predicting fetal macrosomia at different stages of pregnancy: a retrospective study in China.

BMC pregnancy and childbirth
BACKGROUND: Macrosomia presents significant risks to both maternal and neonatal health, however, accurate antenatal prediction remains a major challenge. This study aimed to develop machine learning approaches to enhance the prediction of fetal macro...

The Effects of Presenting AI Uncertainty Information on Pharmacists' Trust in Automated Pill Recognition Technology: Exploratory Mixed Subjects Study.

JMIR human factors
BACKGROUND: Dispensing errors significantly contribute to adverse drug events, resulting in substantial health care costs and patient harm. Automated pill verification technologies have been developed to aid pharmacists with medication dispensing. Ho...

Predicting Type 2 diabetes onset age using machine learning: A case study in KSA.

PloS one
The rising prevalence of Type 2 Diabetes (T2D) in Saudi Arabia presents significant healthcare challenges. Estimating the age at onset of T2D can aid early interventions, potentially reducing complications due to late diagnoses. This study, conducted...

An interpretable machine learning model assists in predicting induction chemotherapy response and survival for locoregionally advanced nasopharyngeal carcinoma using MRI: a multicenter study.

European radiology
OBJECTIVES: To develop and validate an interpretable and generalized machine learning model using MRI for the individualized prediction of induction chemotherapy (ICT) response and survival in locoregionally advanced nasopharyngeal carcinoma (LANPC).

Prediction of High-risk Capsule Characteristics for Recurrence of Pleomorphic Adenoma in the Parotid Gland Based on Habitat Imaging and Peritumoral Radiomics: A Two-center Study.

Academic radiology
RATIONALE AND OBJECTIVES: This study aims to develop and validate an ultrasoundbased habitat imaging and peritumoral radiomics model for predicting high-risk capsule characteristics for recurrence of pleomorphic adenoma (PA) of the parotid gland whil...

Machine Learning Methods Based on Chest CT for Predicting the Risk of COVID-19-Associated Pulmonary Aspergillosis.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a machine learning model based on chest CT and clinical risk factors to predict secondary aspergillus infection in hospitalized COVID-19 patients.

Exploring the importance of clinical and sociodemographic factors on self-rated health in midlife: A cross-sectional study using machine learning.

International journal of medical informatics
BACKGROUND: Self-rated health (SRH) is influenced by various factors, including clinical and sociodemographic characteristics. However, in the context of Brazil, we still lack a clear understanding of the relative importance of these factors and how ...

Machine learning-enhanced surface-enhanced spectroscopic detection of polycyclic aromatic hydrocarbons in the human placenta.

Proceedings of the National Academy of Sciences of the United States of America
The detection and identification of polycyclic aromatic hydrocarbons (PAHs) and their derivatives, polycyclic aromatic compounds (PACs), are essential for environmental and health monitoring, for assessing toxicological exposure and their associated ...

AI-generated and doctors' answers to health-related questions.

Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke
BACKGROUND: Several studies have investigated how large language models answer health-related questions. In a study from 2023, responses to health-related questions in English generated by the language model GPT-3.5 were perceived as more empathetic ...