AI Medical Compendium Topic:
Aged, 80 and over

Clear Filters Showing 701 to 710 of 3152 articles

Predicting changes in brain metabolism and progression from mild cognitive impairment to dementia using multitask Deep Learning models and explainable AI.

NeuroImage
BACKGROUND: The prediction of Alzheimer's disease (AD) progression from its early stages is a research priority. In this context, the use of Artificial Intelligence (AI) in AD has experienced a notable surge in recent years. However, existing investi...

Is artificial intelligence useful in the practice of geriatric dermatology?

Clinics in dermatology
Geriatric dermatology has gained increasing importance through the years, alongside a steadily aging global population. Simultaneously, artificial intelligence (AI) technologies have become more advanced, and AI has been found to be useful in the gen...

Prediction of Alzheimer's disease progression within 6 years using speech: A novel approach leveraging language models.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: Identification of individuals with mild cognitive impairment (MCI) who are at risk of developing Alzheimer's disease (AD) is crucial for early intervention and selection of clinical trials.

A simple machine learning model for the prediction of acute kidney injury following noncardiac surgery in geriatric patients: a prospective cohort study.

BMC geriatrics
BACKGROUND: Surgery in geriatric patients often poses risk of major postoperative complications. Acute kidney injury (AKI) is a common complication following noncardiac surgery and is associated with increased mortality. Early identification of geria...

Development of machine learning models for patients in the high intrahepatic cholangiocarcinoma incidence age group.

BMC geriatrics
BACKGROUND: Intrahepatic cholangiocarcinoma (ICC) has a poor prognosis and is understudied. Based on the clinical features of patients with ICC, we constructed machine learning models to understand their importance on survival and to accurately deter...

Deep learning model for the prediction of all-cause mortality among long term care people in China: a prospective cohort study.

Scientific reports
This study aimed to develop a deep learning model to predict the risk stratification of all-cause death for older people with disability, providing guidance for long-term care plans. Based on the government-led long-term care insurance program in a p...

Deep learning-based prediction of one-year mortality in Finland is an accurate but unfair aging marker.

Nature aging
Short-term mortality risk, which is indicative of individual frailty, serves as a marker for aging. Previous age clocks focused on predicting either chronological age or longer-term mortality. Aging clocks predicting short-term mortality are lacking ...

Neural network model for prediction of possible sarcopenic obesity using Korean national fitness award data (2010-2023).

Scientific reports
Sarcopenic obesity (SO) is characterized by concomitant sarcopenia and obesity and presents a high risk of disability, morbidity, and mortality among older adults. However, predictions based on sequential neural network SO studies and the relationshi...

Video-Based Detection of Freezing of Gait in Daily Clinical Practice in Patients With Parkinsonism.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Freezing of gait (FoG) is a prevalent symptom among individuals with Parkinson's disease and related disorders. FoG detection from videos has been developed recently; however, the process requires using videos filmed within a controlled environment. ...