AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Alzheimer Disease

Showing 61 to 70 of 892 articles

Clear Filters

CSEPC: a deep learning framework for classifying small-sample multimodal medical image data in Alzheimer's disease.

BMC geriatrics
BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impacts health care worldwide, particularly among the elderly population. The accurate classification of AD stages is essential for slowing disease progression an...

Linguistic cues for automatic assessment of Alzheimer's disease across languages.

Journal of Alzheimer's disease : JAD
BackgroundMost common forms of dementia, including Alzheimer's disease, are associated with alterations in spoken language.ObjectiveThis study explores the potential of a speech-based machine learning (ML) approach in estimating cognitive impairment,...

Graph and Multi-Level Sequence Fusion Learning for Predicting the Molecular Activity of BACE-1 Inhibitors.

International journal of molecular sciences
The development of BACE-1 (β-site amyloid precursor protein cleaving enzyme 1) inhibitors is a crucial focus in exploring early treatments for Alzheimer's disease (AD). Recently, graph neural networks (GNNs) have demonstrated significant advantages i...

Exploring Potential Medications for Alzheimer's Disease with Psychosis by Integrating Drug Target Information into Deep Learning Models: A Data-Driven Approach.

International journal of molecular sciences
Approximately 50% of Alzheimer's disease (AD) patients develop psychotic symptoms, leading to a subtype known as psychosis in AD (AD + P), which is associated with accelerated cognitive decline compared to AD without psychosis. Currently, no FDA-appr...

[Classification of Alzheimer's disease based on multi-example learning and multi-scale feature fusion].

Sheng wu yi xue gong cheng xue za zhi = Journal of biomedical engineering = Shengwu yixue gongchengxue zazhi
Alzheimer's disease (AD) classification models usually segment the entire brain image into voxel blocks and assign them labels consistent with the entire image, but not every voxel block is closely related to the disease. To this end, an AD auxiliary...

Deep learning to quantify the pace of brain aging in relation to neurocognitive changes.

Proceedings of the National Academy of Sciences of the United States of America
Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since bi...

Integrating NLP and LLMs to discover biomarkers and mechanisms in Alzheimer's disease.

SLAS technology
Alzheimer's disease (AD) is a progressive neurological condition characterized by cognitive decline, memory loss, and aberrant behaviour. It affects millions of people globally and is one of the main causes of dementia. The neurodegenerative conditio...

A Lightweight Deep Convolutional Neural Network Extracting Local and Global Contextual Features for the Classification of Alzheimer's Disease Using Structural MRI.

IEEE journal of biomedical and health informatics
Recent advancements in the classification of Alzheimer's disease have leveraged the automatic feature generation capability of convolutional neural networks (CNNs) using neuroimaging biomarkers. However, most of the existing CNN-based methods often d...

Amyloid-β Deposition Prediction With Large Language Model Driven and Task-Oriented Learning of Brain Functional Networks.

IEEE transactions on medical imaging
Amyloid- positron emission tomography can reflect the Amyloid- protein deposition in the brain and thus serves as one of the golden standards for Alzheimer's disease (AD) diagnosis. However, its practical cost and high radioactivity hinder its applic...

DEMENTIA: A Hybrid Attention-Based Multimodal and Multi-Task Learning Framework With Expert Knowledge for Alzheimer's Disease Assessment From Speech.

IEEE journal of biomedical and health informatics
The prevalence of Alzheimer's disease (AD) is rising annually, imposing a severe burden on patients and society. Therefore, assisted AD assessment is crucial. The decline in language function and the cognitive impairment it reflects are key external ...