AIMC Topic: Atherosclerosis

Clear Filters Showing 11 to 20 of 84 articles

An interpretable machine learning model with demographic variables and dietary patterns for ASCVD identification: from U.S. NHANES 1999-2018.

BMC medical informatics and decision making
Current research on the association between demographic variables and dietary patterns with atherosclerotic cardiovascular disease (ASCVD) is limited in breadth and depth. This study aimed to construct a machine learning (ML) algorithm that can accur...

Estimation of Machine Learning-Based Models to Predict Dementia Risk in Patients With Atherosclerotic Cardiovascular Diseases: UK Biobank Study.

JMIR aging
BACKGROUND: The atherosclerotic cardiovascular disease (ASCVD) is associated with dementia. However, the risk factors of dementia in patients with ASCVD remain unclear, necessitating the development of accurate prediction models.

Identification of lipid metabolism related immune markers in atherosclerosis through machine learning and experimental analysis.

Frontiers in immunology
BACKGROUND: Atherosclerosis is a significant contributor to cardiovascular disease, and conventional diagnostic methods frequently fall short in the timely and accurate detection of early-stage atherosclerosis. Abnormal lipid metabolism plays a criti...

Identification of crucial genes for polycystic ovary syndrome and atherosclerosis through comprehensive bioinformatics analysis and machine learning.

International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics
OBJECTIVE: To identify potential biomarkers in patients with polycystic ovary syndrome (PCOS) and atherosclerosis, and to explore the common pathologic mechanisms between these two diseases in response to the increased risk of cardiovascular diseases...

The Mechanism of Bisphenol S-Induced Atherosclerosis Elucidated Based on Network Toxicology, Molecular Docking, and Machine Learning.

Journal of applied toxicology : JAT
The increasing prevalence of environmental pollutants has raised public concern about their potential role in diseases such as atherosclerosis (AS). Existing studies suggest that chemicals, including bisphenol S (BPS), may adversely affect cardiovasc...

Evaluation of a Machine Learning-Guided Strategy for Elevated Lipoprotein(a) Screening in Health Systems.

Circulation. Genomic and precision medicine
BACKGROUND: While universal screening for Lipoprotein(a) [Lp(a)] is increasingly recommended, <0.5% of patients undergo Lp(a) testing. Here, we assessed the feasibility of deploying Algorithmic Risk Inspection for Screening Elevated Lp(a) (ARISE), a ...

Using clinical data to reclassify ESUS patients to large artery atherosclerotic or cardioembolic stroke mechanisms.

Journal of neurology
PURPOSE: Embolic stroke of unidentified source (ESUS) represents 10-25% of all ischemic strokes. Our goal was to determine whether ESUS could be reclassified to cardioembolic (CE) or large-artery atherosclerosis (LAA) with machine learning (ML) using...

Integrating Metabolomics Domain Knowledge with Explainable Machine Learning in Atherosclerotic Cardiovascular Disease Classification.

International journal of molecular sciences
Metabolomic data often present challenges due to high dimensionality, collinearity, and variability in metabolite concentrations. Machine learning (ML) application in metabolomic analyses is enabling the extraction of meaningful information from comp...

ChatGPT Responses to Clinical Questions in the Japan Atherosclerosis Society Guidelines for Prevention of Atherosclerotic Cardiovascular Disease 2022.

Journal of atherosclerosis and thrombosis
AIMS: Artificial intelligence is increasingly used in the medical field. We assessed the accuracy and reproducibility of responses by ChatGPT to clinical questions (CQs) in the Japan Atherosclerosis Society Guidelines for Prevention Atherosclerotic C...