AIMC Topic: Atrial Fibrillation

Clear Filters Showing 51 to 60 of 318 articles

Simulation-free prediction of atrial fibrillation inducibility with the fibrotic kernel signature.

Medical image analysis
Computational models of atrial fibrillation (AF) can help improve success rates of interventions, such as ablation. However, evaluating the efficacy of different treatments requires performing multiple costly simulations by pacing at different points...

The role of artificial intelligence in optimizing management of atrial fibrillation in acute ischemic stroke.

Annals of the New York Academy of Sciences
Atrial fibrillation (AF) is a severe condition associated with high morbidity and mortality, including an increased risk of stroke and poor outcomes poststroke. Our understanding of the prognosis in AF remains poor. Machine learning (ML) has been app...

ECG classification based on guided attention mechanism.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Integrating domain knowledge into deep learning models can improve their effectiveness and increase explainability. This study aims to enhance the classification performance of electrocardiograms (ECGs) by customizing specif...

Development of learning-based predictive models for radiation-induced atrial fibrillation in non-small cell lung cancer patients by integrating patient-specific clinical, dosimetry, and diagnostic information.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Radiotherapy (RT) in non-small cell lung cancer (NSCLC) can induce cardiac adverse events, including atrial fibrillation (AF), despite advanced RT. This study integrates patient-specific information to develop learning-based m...

Machine Learning Algorithm to Predict Atrial Fibrillation Using Serial 12-Lead ECGs Based on Left Atrial Remodeling.

Journal of the American Heart Association
BACKGROUND: We hypothesized that analysis of serial ECGs could predict new-onset atrial fibrillation (AF) more accurately than analysis of a single ECG by detecting the subtle cardiac remodeling that occurs immediately before AF occurrence. Our aim i...

Factors associated with 90-day mortality in Vietnamese stroke patients: Prospective findings compared with explainable machine learning, multicenter study.

PloS one
The prevalence and predictors of mortality following an ischemic stroke or intracerebral hemorrhage have not been well established among patients in Vietnam. 2885 consecutive diagnosed patients with ischemic stroke and intracerebral hemorrhage at ten...

Neural network reconstruction of the left atrium using sparse catheter paths.

International journal of computer assisted radiology and surgery
PURPOSE: Catheter-based radiofrequency ablation for pulmonary vein isolation has become the first line of treatment for atrial fibrillation in recent years. This requires a rather accurate map of the left atrial sub-endocardial surface including the ...

Fed-CL- an atrial fibrillation prediction system using ECG signals employing federated learning mechanism.

Scientific reports
Deep learning has shown great promise in predicting Atrial Fibrillation using ECG signals and other vital signs. However, a major hurdle lies in the privacy concerns surrounding these datasets, which often contain sensitive patient information. Balan...