AIMC Topic: Brain

Clear Filters Showing 961 to 970 of 4188 articles

EEG Emotion Recognition Network Based on Attention and Spatiotemporal Convolution.

Sensors (Basel, Switzerland)
Human emotions are complex psychological and physiological responses to external stimuli. Correctly identifying and providing feedback on emotions is an important goal in human-computer interaction research. Compared to facial expressions, speech, or...

A machine-learning approach for differentiating borderline personality disorder from community participants with brain-wide functional connectivity.

Journal of affective disorders
BACKGROUND: Functional connectivity has garnered interest as a potential biomarker of psychiatric disorders including borderline personality disorder (BPD). However, small sample sizes and lack of within-study replications have led to divergent findi...

Lack of evidence for predictive utility from resting state fMRI data for individual exposure-based cognitive behavioral therapy outcomes: A machine learning study in two large multi-site samples in anxiety disorders.

NeuroImage
Data-based predictions of individual Cognitive Behavioral Therapy (CBT) treatment response are a fundamental step towards precision medicine. Past studies demonstrated only moderate prediction accuracy (i.e. ability to discriminate between responders...

Spike-based dynamic computing with asynchronous sensing-computing neuromorphic chip.

Nature communications
By mimicking the neurons and synapses of the human brain and employing spiking neural networks on neuromorphic chips, neuromorphic computing offers a promising energy-efficient machine intelligence. How to borrow high-level brain dynamic mechanisms t...

A comparative analysis of different augmentations for brain images.

Medical & biological engineering & computing
Deep learning (DL) requires a large amount of training data to improve performance and prevent overfitting. To overcome these difficulties, we need to increase the size of the training dataset. This can be done by augmentation on a small dataset. The...

Predicting post-surgical functional status in high-grade glioma with resting state fMRI and machine learning.

Journal of neuro-oncology
PURPOSE: High-grade glioma (HGG) is the most common and deadly malignant glioma of the central nervous system. The current standard of care includes surgical resection of the tumor, which can lead to functional and cognitive deficits. The aim of this...

nBEST: Deep-learning-based non-human primates Brain Extraction and Segmentation Toolbox across ages, sites and species.

NeuroImage
Accurate processing and analysis of non-human primate (NHP) brain magnetic resonance imaging (MRI) serves an indispensable role in understanding brain evolution, development, aging, and diseases. Despite the accumulation of diverse NHP brain MRI data...

Detecting Alzheimer's Disease Stages and Frontotemporal Dementia in Time Courses of Resting-State fMRI Data Using a Machine Learning Approach.

Journal of imaging informatics in medicine
Early, accurate diagnosis of neurodegenerative dementia subtypes such as Alzheimer's disease (AD) and frontotemporal dementia (FTD) is crucial for the effectiveness of their treatments. However, distinguishing these conditions becomes challenging whe...

Improved differentiation of cavernous malformation and acute intraparenchymal hemorrhage on CT using an AI algorithm.

Scientific reports
This study aimed to evaluate the utility of an artificial intelligence (AI) algorithm in differentiating between cerebral cavernous malformation (CCM) and acute intraparenchymal hemorrhage (AIH) on brain computed tomography (CT). A retrospective, mul...