AIMC Topic: Breast Neoplasms

Clear Filters Showing 231 to 240 of 2158 articles

Accelerated High-resolution T1- and T2-weighted Breast MRI with Deep Learning Super-resolution Reconstruction.

Academic radiology
RATIONALE AND OBJECTIVES: To assess the performance of an industry-developed deep learning (DL) algorithm to reconstruct low-resolution Cartesian T1-weighted dynamic contrast-enhanced (T1w) and T2-weighted turbo-spin-echo (T2w) sequences and compare ...

Traditional versus modern approaches to screening mammography: a comparison of computer-assisted detection for synthetic 2D mammography versus an artificial intelligence algorithm for digital breast tomosynthesis.

Breast cancer research and treatment
PURPOSE: Traditional computer-assisted detection (CADe) algorithms were developed for 2D mammography, while modern artificial intelligence (AI) algorithms can be applied to 2D mammography and/or digital breast tomosynthesis (DBT). The objective is to...

AIScholar: An OpenFaaS-enhanced cloud platform for intelligent medical data analytics.

Computers in biology and medicine
This paper presents AIScholar, an intelligent research cloud platform developed based on artificial intelligence analysis methods and the OpenFaaS serverless framework, designed for intelligent analysis of clinical medical data with high scalability....

Raman Spectroscopy and Exosome-Based Machine Learning Predicts the Efficacy of Neoadjuvant Therapy for HER2-Positive Breast Cancer.

Analytical chemistry
Early prediction of the neoadjuvant therapy efficacy for HER2-positive breast cancer is crucial for personalizing treatment and enhancing patient outcomes. Exosomes, which play a role in tumor development and treatment response, are emerging as poten...

Effective BCDNet-based breast cancer classification model using hybrid deep learning with VGG16-based optimal feature extraction.

BMC medical imaging
PROBLEM: Breast cancer is a leading cause of death among women, and early detection is crucial for improving survival rates. The manual breast cancer diagnosis utilizes more time and is subjective. Also, the previous CAD models mostly depend on manma...

PRAF2 as a novel biomarker for breast cancer with machine learning and experimentation validation.

BMC cancer
BACKGROUND: Breast cancer (BC) is the most prevalent malignancy in women. Potential therapeutic targets for BC are of great significance. In our previous study, we found that prenylated rab acceptor 1 domain family member 2 (PRAF2) is an oncogene in ...

Rad4XCNN: A new agnostic method for post-hoc global explanation of CNN-derived features by means of Radiomics.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: In recent years, machine learning-based clinical decision support systems (CDSS) have played a key role in the analysis of several medical conditions. Despite their promising capabilities, the lack of transparency in AI mode...

Nationwide real-world implementation of AI for cancer detection in population-based mammography screening.

Nature medicine
Artificial intelligence (AI) in mammography screening has shown promise in retrospective evaluations, but few prospective studies exist. PRAIM is an observational, multicenter, real-world, noninferiority, implementation study comparing the performanc...

Automated Quantification of HER2 Amplification Levels Using Deep Learning.

IEEE journal of biomedical and health informatics
HER2 assessment is necessary for patient selection in anti-HER2 targeted treatment. However, manual assessment of HER2 amplification is time-costly, labor-intensive, highly subjective and error-prone. Challenges in HER2 analysis in fluorescence in si...