AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Breast Neoplasms

Showing 301 to 310 of 2031 articles

Clear Filters

Screening of BindingDB database ligands against EGFR, HER2, Estrogen, Progesterone and NF-κB receptors based on machine learning and molecular docking.

Computers in biology and medicine
Breast cancer, the second most prevalent cancer among women worldwide, necessitates the exploration of novel therapeutic approaches. To target the four subgroups of breast cancer "hormone receptor-positive and HER2-negative, hormone receptor-positive...

Integration of transcriptomics and machine learning for insights into breast cancer: exploring lipid metabolism and immune interactions.

Frontiers in immunology
BACKGROUND: Breast cancer (BRCA) represents a substantial global health challenge marked by inadequate early detection rates. The complex interplay between the tumor immune microenvironment and fatty acid metabolism in BRCA requires further investiga...

Predicting Breast Cancer Relapse from Histopathological Images with Ensemble Machine Learning Models.

Current oncology (Toronto, Ont.)
Relapse and metastasis occur in 30-40% of breast cancer patients, even after targeted treatments like trastuzumab for HER2-positive breast cancer. Accurate individual prognosis is essential for determining appropriate adjuvant treatment and early int...

Deep-AutoMO: Deep automated multiobjective neural network for trustworthy lesion malignancy diagnosis in the early stage via digital breast tomosynthesis.

Computers in biology and medicine
Breast cancer is the most prevalent cancer in women, and early diagnosis of malignant lesions is crucial for developing treatment plans. Digital breast tomosynthesis (DBT) has emerged as a valuable tool for early breast cancer detection, as it can id...

The SINFONIA project repository for AI-based algorithms and health data.

Frontiers in public health
The SINFONIA project's main objective is to develop novel methodologies and tools that will provide a comprehensive risk appraisal for detrimental effects of radiation exposure on patients, workers, caretakers, and comforters, the public, and the env...

For the busy clinical-imaging professional in an AI world: Gaining intuition about deep learning without math.

Journal of medical imaging and radiation sciences
Medical diagnostics comprise recognizing patterns in images, tissue slides, and symptoms. Deep learning algorithms (DLs) are well suited to such tasks, but they are black boxes in various ways. To explain DL Computer-Aided Diagnostic (CAD) results an...

Combining metabolomics and machine learning to discover biomarkers for early-stage breast cancer diagnosis.

PloS one
There is an urgent need for better biomarkers for the detection of early-stage breast cancer. Utilizing untargeted metabolomics and lipidomics in conjunction with advanced data mining approaches for metabolism-centric biomarker discovery and validati...

Machine learning-based discrimination of benign and malignant breast lesions on US: The contribution of shear-wave elastography.

European journal of radiology
PURPOSE: To build and validate a combined radiomics and machine learning (ML) approach using B-mode US and SWE images to differentiate benign from malignant solid breast lesions (BLs) and compare its performance with that of an expert radiologist.

Optimization and correction of breast dynamic optical imaging projection data based on deep learning.

Computational biology and chemistry
Breast cancer poses a significant health threat to women, necessitating advancements in diagnostic technologies. Breast dynamic optical imaging (DOI) technology, recognized for its non-invasive and radiation-free properties, is extensively utilized f...