AIMC Topic: Breath Holding

Clear Filters Showing 11 to 20 of 35 articles

Deep Learning Reconstruction of Prospectively Accelerated MRI of the Pancreas: Clinical Evaluation of Shortened Breath-Hold Examinations With Dixon Fat Suppression.

Investigative radiology
OBJECTIVE: Deep learning (DL)-enabled magnetic resonance imaging (MRI) reconstructions can enable shortening of breath-hold examinations and improve image quality by reducing motion artifacts. Prospective studies with DL reconstructions of accelerate...

Prospective Deployment of Deep Learning Reconstruction Facilitates Highly Accelerated Upper Abdominal MRI.

Academic radiology
RATIONALE AND OBJECTIVES: To compare a conventional T1 volumetric interpolated breath-hold examination (VIBE) with SPectral Attenuated Inversion Recovery (SPAIR) fat saturation and a deep learning (DL)-reconstructed accelerated VIBE sequence with SPA...

Enhanced parameter estimation in multiparametric arterial spin labeling using artificial neural networks.

Magnetic resonance in medicine
PURPOSE: Multiparametric arterial spin labeling (MP-ASL) can quantify cerebral blood flow (CBF) and arterial cerebral blood volume (CBV). However, its accuracy is compromised owing to its intrinsically low SNR, necessitating complex and time-consumin...

Deep learning-accelerated T2WI: image quality, efficiency, and staging performance against BLADE T2WI for gastric cancer.

Abdominal radiology (New York)
PURPOSE: The purpose of our study is to investigate image quality, efficiency, and diagnostic performance of a deep learning-accelerated single-shot breath-hold (DLSB) against BLADE for T-weighted MR imaging (TWI) for gastric cancer (GC).

Enhancing gadoxetic acid-enhanced liver MRI: a synergistic approach with deep learning CAIPIRINHA-VIBE and optimized fat suppression techniques.

European radiology
OBJECTIVE: To investigate whether a deep learning (DL) controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA)-volumetric interpolated breath-hold examination (VIBE) technique can improve image quality, lesion conspicuity,...

Prospective Comparison of Free-Breathing Accelerated Cine Deep Learning Reconstruction Versus Standard Breath-Hold Cardiac MRI Sequences in Patients With Ischemic Heart Disease.

AJR. American journal of roentgenology
Cine cardiac MRI sequences require repeated breath-holds, which can be difficult for patients with ischemic heart disease (IHD). The purpose of the study was to compare a free-breathing accelerated cine sequence using deep learning (DL) reconstruct...

Accelerated Cine Cardiac MRI Using Deep Learning-Based Reconstruction: A Systematic Evaluation.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Breath-holding (BH) for cine balanced steady state free precession (bSSFP) imaging is challenging for patients with impaired BH capacity. Deep learning-based reconstruction (DLR) of undersampled k-space promises to shorten BHs while prese...

From Compressed-Sensing to Deep Learning MR: Comparative Biventricular Cardiac Function Analysis in a Patient Cohort.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Conventional segmented, retrospectively gated cine (Conv-cine) is challenged in patients with breath-hold difficulties. Compressed sensing (CS) has shown values in cine imaging but generally requires long reconstruction time. Recent artif...

Development of deep learning chest X-ray model for cardiac dose prediction in left-sided breast cancer radiotherapy.

Scientific reports
Deep inspiration breath-hold (DIBH) is widely used to reduce the cardiac dose in left-sided breast cancer radiotherapy. This study aimed to develop a deep learning chest X-ray model for cardiac dose prediction to select patients with a potentially hi...

Clinical feasibility of an abdominal thin-slice breath-hold single-shot fast spin echo sequence processed using a deep learning-based noise-reduction approach.

Magnetic resonance imaging
BACKGROUND: T2-weighted imaging (T2WI) is a key sequence of MRI studies of the pancreas. The single-shot fast spin echo (single-shot FSE) sequence is an accelerated form of T2WI. We hypothesized that denoising approach with deep learning-based recons...