AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Child, Preschool

Showing 101 to 110 of 1150 articles

Clear Filters

Deep Learning-Based Tract Classification of Preoperative DWI Tractography Advances the Prediction of Short-Term Postoperative Language Improvement in Children With Drug-Resistant Epilepsy.

IEEE transactions on bio-medical engineering
OBJECTIVE: To develop an innovative deep convolutional neural network (DCNN)-based tract classification to enhance the prediction of short-term postoperative language improvement using axonal connectivity markers derived from specific language modula...

Machine learning demonstrates clinical utility in distinguishing retinoblastoma from pseudo retinoblastoma with RetCam images.

Ophthalmic genetics
BACKGROUND: Retinoblastoma is diagnosed and treated without biopsy based solely on appearance (with the indirect ophthalmoscope and imaging). More than 20 benign ophthalmic disorders resemble retinoblastoma and errors in diagnosis continue to be made...

Predicting stunting status among under-5 children in Rwanda using neural network model: Evidence from 2020 Rwanda demographic and health survey.

F1000Research
BACKGROUND: Stunting is a serious public health concern in Rwanda, affecting around 33.3% of children under five in 2020. The researchers have employed machine learning algorithms to predict stunting in Rwanda; however, few studies used ANNs, despite...

Automated segmentation of child-clinician speech in naturalistic clinical contexts.

Research in developmental disabilities
BACKGROUND: Computational approaches hold significant promise for enhancing diagnosis and therapy in child and adolescent clinical practice. Clinical procedures heavily depend n vocal exchanges and interpersonal dynamics conveyed through speech. Rese...

Factors Associated with Abusive Head Trauma in Young Children Presenting to Emergency Medical Services Using a Large Language Model.

Prehospital emergency care
OBJECTIVES: Abusive head trauma (AHT) is a leading cause of death in young children. Analyses of patient characteristics presenting to Emergency Medical Services (EMS) are often limited to structured data fields. Artificial Intelligence (AI) and Larg...

Predicting Paediatric Brain Disorders from MRI Images Using Advanced Deep Learning Techniques.

Neuroinformatics
The problem at hand is the significant global health challenge posed by children's diseases, where timely and accurate diagnosis is crucial for effective treatment and management. Conventional diagnosis techniques are typical, use tedious processes a...

Derivation and validation of a clinical predictive model for longer duration diarrhea among pediatric patients in Kenya using machine learning algorithms.

BMC medical informatics and decision making
BACKGROUND: Despite the adverse health outcomes associated with longer duration diarrhea (LDD), there are currently no clinical decision tools for timely identification and better management of children with increased risk. This study utilizes machin...

Machine learning analysis of cervical balance in early-onset scoliosis post-growing rod surgery: a case-control study.

Scientific reports
We aimed to analyze the cervical sagittal alignment change following the growing rod treatment in early-onset scoliosis (EOS) and identify the risk factors of sagittal cervical imbalance after growing-rod surgery of machine learning. EOS patients fro...

Risk Prediction of Liver Injury in Pediatric Tuberculosis Treatment: Development of an Automated Machine Learning Model.

Drug design, development and therapy
PURPOSE: Drug-induced liver injury (DILI) is one of the most common and serious adverse drug reactions related to first-line anti-tuberculosis drugs in pediatric tuberculosis patients. This study aims to develop an automatic machine learning (AutoML)...

Using supervised machine learning and ICD10 to identify non-accidental trauma in pediatric trauma patients in the Maryland Health Services Cost Review Commission dataset.

Child abuse & neglect
BACKGROUND: Identifying non-accidental trauma (NAT) in pediatric trauma patients is challenging. We developed a machine learning model that uses demographic characteristics and ICD10 codes to detect the first diagnosis of NAT.