AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Contrast Media

Showing 141 to 150 of 512 articles

Clear Filters

Develop and Validate a Nomogram Combining Contrast-Enhanced Spectral Mammography Deep Learning with Clinical-Pathological Features to Predict Neoadjuvant Chemotherapy Response in Patients with ER-Positive/HER2-Negative Breast Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a nomogram that combines contrast-enhanced spectral mammography (CESM) deep learning with clinical-pathological features to predict neoadjuvant chemotherapy (NAC) response (either low Miller Payne (MP...

Fully automated explainable abdominal CT contrast media phase classification using organ segmentation and machine learning.

Medical physics
BACKGROUND: Contrast-enhanced computed tomography (CECT) provides much more information compared to non-enhanced CT images, especially for the differentiation of malignancies, such as liver carcinomas. Contrast media injection phase information is us...

SPINNED: Simulation-based physics-informed neural network for deconvolution of dynamic susceptibility contrast MRI perfusion data.

Magnetic resonance in medicine
PURPOSE: To propose the simulation-based physics-informed neural network for deconvolution of dynamic susceptibility contrast (DSC) MRI (SPINNED) as an alternative for more robust and accurate deconvolution compared to existing methods.

The value of CT radiomics combined with deep transfer learning in predicting the nature of gallbladder polypoid lesions.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: Computed tomography (CT) radiomics combined with deep transfer learning was used to identify cholesterol and adenomatous gallbladder polyps that have not been well evaluated before surgery.

Toward Precision Diagnosis: Machine Learning in Identifying Malignant Orbital Tumors With Multiparametric 3 T MRI.

Investigative radiology
BACKGROUND: Orbital tumors present a diagnostic challenge due to their varied locations and histopathological differences. Although recent advancements in imaging have improved diagnosis, classification remains a challenge. The integration of artific...

Deep learning-based compressed SENSE improved diffusion-weighted image quality and liver cancer detection: A prospective study.

Magnetic resonance imaging
PURPOSE: To assess whether diffusion-weighted imaging (DWI) with Compressed SENSE (CS) and deep learning (DL-CS-DWI) can improve image quality and lesion detection in patients at risk for hepatocellular carcinoma (HCC).

Convolutional Neural Networks to Study Contrast-Enhanced Magnetic Resonance Imaging-Based Skeletal Calf Muscle Perfusion in Peripheral Artery Disease.

The American journal of cardiology
Peripheral artery disease (PAD) is associated with impaired blood flow in the lower extremities and histopathologic changes of the skeletal calf muscles, resulting in abnormal microvascular perfusion. We studied the use of convolution neural networks...

Automated graded prognostic assessment for patients with hepatocellular carcinoma using machine learning.

European radiology
BACKGROUND: Accurate mortality risk quantification is crucial for the management of hepatocellular carcinoma (HCC); however, most scoring systems are subjective.

Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening.

Japanese journal of radiology
PURPOSE: To distinguish malignant and benign bowel wall thickening (BWT) by using computed tomography (CT) texture features based on machine learning (ML) models and to compare its success with the clinical model and combined model.