AIMC Topic: Contrast Media

Clear Filters Showing 61 to 70 of 546 articles

Development and Validation of a Deep Learning System to Differentiate HER2-Zero, HER2-Low, and HER2-Positive Breast Cancer Based on Dynamic Contrast-Enhanced MRI.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Previous studies explored MRI-based radiomic features for differentiating between human epidermal growth factor receptor 2 (HER2)-zero, HER2-low, and HER2-positive breast cancer, but deep learning's effectiveness is uncertain.

Deep Learning for Contrast Enhanced Mammography - A Systematic Review.

Academic radiology
BACKGROUND/AIM: Contrast-enhanced mammography (CEM) is a relatively novel imaging technique that enables both anatomical and functional breast imaging, with improved diagnostic performance compared to standard 2D mammography. The aim of this study is...

Reliability and quality of information provided by artificial intelligence chatbots on post-contrast acute kidney injury: an evaluation of diagnostic, preventive, and treatment guidance.

Revista da Associacao Medica Brasileira (1992)
OBJECTIVE: The aim of this study was to evaluate the reliability and quality of information provided by artificial intelligence chatbots regarding the diagnosis, preventive methods, and treatment of contrast-associated acute kidney injury, while also...

A CT-based deep learning for segmenting tumors and predicting microsatellite instability in patients with colorectal cancers: a multicenter cohort study.

La Radiologia medica
PURPOSE: To develop and validate deep learning (DL) models using preoperative contrast-enhanced CT images for tumor auto-segmentation and microsatellite instability (MSI) prediction in colorectal cancer (CRC).

The Value of Whole-Volume Radiomics Machine Learning Model Based on Multiparametric MRI in Predicting Triple-Negative Breast Cancer.

Journal of computer assisted tomography
OBJECTIVE: This study aimed to investigate the value of radiomics analysis in the precise diagnosis of triple-negative breast cancer (TNBC) based on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and apparent diffusion coeffici...

An artificial intelligence-based recognition model of colorectal liver metastases in intraoperative ultrasonography with improved accuracy through algorithm integration.

Journal of hepato-biliary-pancreatic sciences
BACKGROUND/PURPOSE: Contrast-enhanced intraoperative ultrasonography (CE-IOUS) is crucial for detecting colorectal liver metastases (CLM) during surgery. Although artificial intelligence shows potential in diagnostic systems, its application in CE-IO...

Contrast-enhanced thin-slice abdominal CT with super-resolution deep learning reconstruction technique: evaluation of image quality and visibility of anatomical structures.

Japanese journal of radiology
PURPOSE: To compare image quality and visibility of anatomical structures on contrast-enhanced thin-slice abdominal CT images reconstructed using super-resolution deep learning reconstruction (SR-DLR), deep learning-based reconstruction (DLR), and hy...

Feasibility of Ultra-low Radiation and Contrast Medium Dosage in Aortic CTA Using Deep Learning Reconstruction at 60 kVp: An Image Quality Assessment.

Academic radiology
OBJECTIVE: To assess the viability of using ultra-low radiation and contrast medium (CM) dosage in aortic computed tomography angiography (CTA) through the application of low tube voltage (60kVp) and a novel deep learning image reconstruction algorit...