AIMC Topic: Convolutional Neural Networks

Clear Filters Showing 91 to 100 of 291 articles

SVEA: an accurate model for structural variation detection using multi-channel image encoding and enhanced AlexNet architecture.

Journal of translational medicine
BACKGROUND: Structural variations (SVs) are a pervasive and impactful class of genetic variation within the genome, significantly influencing gene function, impacting human health, and contributing to disease. Recent advances in deep learning have sh...

Optimizing thermal dose prediction in nanoparticle-mediated photothermal therapy using a convolutional neural network-based model.

Journal of thermal biology
Nanoparticle-mediated photothermal therapy (NMPTT) is an up-and-coming targeted cancer treatment. Here, nanoparticles are used to convert near-infrared light into localized heat that can kill tumour cells while sparing surrounding healthy tissue. Nev...

EffNet: an efficient one-dimensional convolutional neural networks for efficient classification of long-term ECG fragments.

Biomedical physics & engineering express
Early Diagnosis of Cardiovascular disease (CVD) is essential to prevent a person from death in case of a cardiac arrhythmia. Automated ECG classification is required because manual classification by cardiologists is laborious, time-consuming, and pro...

A novel graph convolutional neural network model for predicting soil Cd and As pollution: Identification of influencing factors and interpretability.

Ecotoxicology and environmental safety
Soil pollution caused by toxic metals poses serious threats to the ecological environment and human well-being. Accurately predicting toxic metal concentrations is critical for safeguarding soil environmental security. However, the distribution of so...

Convolutional neural network for gesture recognition human-computer interaction system design.

PloS one
Gesture interaction applications have garnered significant attention from researchers in the field of human-computer interaction due to their inherent convenience and intuitiveness. Addressing the challenge posed by the insufficient feature extractio...

Interpretation of basal nuclei in brain dopamine transporter scans using a deep convolutional neural network.

Nuclear medicine communications
OBJECTIVE: Functional imaging using the dopamine transporter (DAT) as a biomarker has proven effective in assessing dopaminergic neuron degeneration in the striatum. In assessing the neuron degeneration, visual and semiquantitative methods are used t...

Predicting malignant risk of ground-glass nodules using convolutional neural networks based on dual-time-point F-FDG PET/CT.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Accurately predicting the malignant risk of ground-glass nodules (GGOs) is crucial for precise treatment planning. This study aims to utilize convolutional neural networks based on dual-time-point F-FDG PET/CT to predict the malignant ris...

Sway frequencies may predict postural instability in Parkinson's disease: a novel convolutional neural network approach.

Journal of neuroengineering and rehabilitation
BACKGROUND: Postural instability greatly reduces quality of life in people with Parkinson's disease (PD). Early and objective detection of postural impairments is crucial to facilitate interventions. Our aim was to use a convolutional neural network ...

Deep learning-assisted screening and diagnosis of scoliosis: segmentation of bare-back images via an attention-enhanced convolutional neural network.

Journal of orthopaedic surgery and research
BACKGROUND: Traditional diagnostic tools for scoliosis screening necessitate a substantial number of specialized personnel and equipment, leading to inconvenience that can result in missed opportunities for early diagnosis and optimal treatment. We h...