AIMC Topic: Coronary Angiography

Clear Filters Showing 51 to 60 of 409 articles

Predictive performance of machine learning models for kidney complications following coronary interventions: a systematic review and meta-analysis.

International urology and nephrology
BACKGROUND: Acute kidney injury (AKI) and contrast-induced nephropathy (CIN) are common complications following percutaneous coronary intervention (PCI) or coronary angiography (CAG), presenting significant clinical challenges. Machine learning (ML) ...

HAGMN-UQ: Hyper association graph matching network with uncertainty quantification for coronary artery semantic labeling.

Medical image analysis
Coronary artery disease (CAD) is one of the leading causes of death worldwide. Accurate extraction of individual arterial branches from invasive coronary angiograms (ICA) is critical for CAD diagnosis and detection of stenosis. Generating semantic se...

Artificial Intelligence Improves Prediction of Major Adverse Cardiovascular Events in Patients Undergoing Transcatheter Aortic Valve Replacement Planning CT.

Academic radiology
RATIONALE AND OBJECTIVES: Coronary CT angiography (CCTA) is mandatory before transcatheter aortic valve replacement (TAVR). Our objective was to evaluate the efficacy of artificial intelligence (AI)-powered software in automatically analyzing cardiac...

Coronary artery disease detection using deep learning and ultrahigh-resolution photon-counting coronary CT angiography.

Diagnostic and interventional imaging
PURPOSE: The purpose of this study was to evaluate the diagnostic performance of automated deep learning in the detection of coronary artery disease (CAD) on photon-counting coronary CT angiography (PC-CCTA).

Patient-Specific Myocardial Infarction Risk Thresholds From AI-Enabled Coronary Plaque Analysis.

Circulation. Cardiovascular imaging
BACKGROUND: Plaque quantification from coronary computed tomography angiography has emerged as a valuable predictor of cardiovascular risk. Deep learning can provide automated quantification of coronary plaque from computed tomography angiography. We...

AngioPy Segmentation: An open-source, user-guided deep learning tool for coronary artery segmentation.

International journal of cardiology
BACKGROUND: Quantitative coronary angiography (QCA) typically employs traditional edge detection algorithms that often require manual correction. This has important implications for the accuracy of downstream 3D coronary reconstructions and computed ...