AIMC Topic: Coronary Artery Disease

Clear Filters Showing 51 to 60 of 511 articles

Radiomics and deep learning features of pericoronary adipose tissue on non-contrast computerized tomography for predicting non-calcified plaques.

Journal of X-ray science and technology
BACKGROUND: Inflammation of coronary arterial plaque is considered a key factor in the development of coronary heart disease. Early the plaque detection and timely treatment of the atherosclerosis could effectively reduce the risk of cardiovascular e...

Machine learning-based predictive models for perioperative major adverse cardiovascular events in patients with stable coronary artery disease undergoing noncardiac surgery.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Accurate prediction of perioperative major adverse cardiovascular events (MACEs) is crucial, as it not only aids clinicians in comprehensively assessing patients' surgical risks and tailoring personalized surgical and periop...

Cell-free plasma telomere length correlated with the risk of cardiovascular events using machine learning classifiers.

Scientific reports
This retrospective study explored the association between circulating cell-free plasma telomere length (cf-TL) and coronary artery disease (CAD) and heart failure (HF). Data from 518 participants were collected, including clinical and laboratory data...

AI-CADR: Artificial Intelligence Based Risk Stratification of Coronary Artery Disease Using Novel Non-Invasive Biomarkers.

IEEE journal of biomedical and health informatics
Coronary artery disease (CAD) is one of the most common causes of sudden cardiac arrest, accounting for a large percentage of global mortality. A timely diagnosis and detection may save a person's life. The research suggests a methodological framewor...

Diagnostic Performance of Artificial Intelligence-Based Angiography-Derived Non-Hyperemic Pressure Ratio Using Pressure Wire as Reference.

Circulation journal : official journal of the Japanese Circulation Society
BACKGROUND: The angiography-derived non-hyperemic pressure ratio (angioNHPR) is a novel index of NHPR based on artificial intelligence (AI) that does not require pressure wires. We investigated the diagnostic accuracy of angioNHPR for detecting hemod...

Cohort profile: AI-driven national Platform for CCTA for clinicaL and industriaL applicatiOns (APOLLO).

BMJ open
PURPOSE: Coronary CT angiography (CCTA) is well established for the diagnostic evaluation and prognostication of coronary artery disease (CAD). The growing burden of CAD in Asia and the emergence of novel CT-based risk markers highlight the need for ...

Automated Classification of Coronary Plaque on Intravascular Ultrasound by Deep Classifier Cascades.

IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Intravascular ultrasound (IVUS) is the gold standard modality for in vivo visualization of coronary arteries and atherosclerotic plaques. Classification of coronary plaques helps to characterize heterogeneous components and evaluate the risk of plaqu...