AIMC Topic:
Databases, Factual

Clear Filters Showing 1511 to 1520 of 2939 articles

Rule-based and machine learning algorithms identify patients with systemic sclerosis accurately in the electronic health record.

Arthritis research & therapy
BACKGROUND: Systemic sclerosis (SSc) is a rare disease with studies limited by small sample sizes. Electronic health records (EHRs) represent a powerful tool to study patients with rare diseases such as SSc, but validated methods are needed. We devel...

DeepFHR: intelligent prediction of fetal Acidemia using fetal heart rate signals based on convolutional neural network.

BMC medical informatics and decision making
BACKGROUND: Fetal heart rate (FHR) monitoring is a screening tool used by obstetricians to evaluate the fetal state. Because of the complexity and non-linearity, a visual interpretation of FHR signals using common guidelines usually results in signif...

Long Short-Term Memory Recurrent Neural Networks for Multiple Diseases Risk Prediction by Leveraging Longitudinal Medical Records.

IEEE journal of biomedical and health informatics
Individuals suffer from chronic diseases without being identified in time, which brings lots of burden of disease to the society. This paper presents a multiple disease risk prediction method to systematically assess future disease risks for patients...

Attention by Selection: A Deep Selective Attention Approach to Breast Cancer Classification.

IEEE transactions on medical imaging
Deep learning approaches are widely applied to histopathological image analysis due to the impressive levels of performance achieved. However, when dealing with high-resolution histopathological images, utilizing the original image as input to the de...

Gait Biomarkers Classification by Combining Assembled Algorithms and Deep Learning: Results of a Local Study.

Computational and mathematical methods in medicine
Machine learning, one of the core disciplines of artificial intelligence, is an approach whose main emphasis is analytical model building. In other words, machine learning enables an automaton to make its own decisions based on a previous training pr...

Validation Study of QSAR/DNN Models Using the Competition Datasets.

Molecular informatics
Since the QSAR/DNN model showed predominant predictive performance over other conventional methods in the Kaggle QSAR competition, many artificial neural network (ANN) methods have been applied to drug and material discovery. Appearance of artificial...

Nutrient Estimation from 24-Hour Food Recalls Using Machine Learning and Database Mapping: A Case Study with Lactose.

Nutrients
The Automated Self-Administered 24-Hour Dietary Assessment Tool (ASA24) is a free dietary recall system that outputs fewer nutrients than the Nutrition Data System for Research (NDSR). NDSR uses the Nutrition Coordinating Center (NCC) Food and Nutrie...

Predicting the occurrence of surgical site infections using text mining and machine learning.

PloS one
In this study we propose the use of text mining and machine learning methods to predict and detect Surgical Site Infections (SSIs) using textual descriptions of surgeries and post-operative patients' records, mined from the database of a high complex...