AIMC Topic: Deep Learning

Clear Filters Showing 1401 to 1410 of 26474 articles

Pre-trained convolutional neural networks identify Parkinson's disease from spectrogram images of voice samples.

Scientific reports
Machine learning approaches including deep learning models have shown promising performance in the automatic detection of Parkinson's disease. These approaches rely on different types of data with voice recordings being the most used due to the conve...

A deep ensemble learning approach for squamous cell classification in cervical cancer.

Scientific reports
Cervical cancer, arising from the cells of the cervix, the lower segment of the uterus connected to the vagina-poses a significant health threat. The microscopic examination of cervical cells using Pap smear techniques plays a crucial role in identif...

A privacy-preserving dependable deep federated learning model for identifying new infections from genome sequences.

Scientific reports
The traditional molecular-based identification (TMID) technique of new infections from genome sequences (GSs) has made significant contributions so far. However, due to the sensitive nature of the medical data, the TMID technique of transferring the ...

Pretrained transformers applied to clinical studies improve predictions of treatment efficacy and associated biomarkers.

Nature communications
Cancer treatment has made significant advancements in recent decades, however many patients still experience treatment failure or resistance. Attempts to identify determinants of response have been hampered by a lack of tools that simultaneously acco...

Skin cancer detection using dermoscopic images with convolutional neural network.

Scientific reports
Skin malignant melanoma is a high-risk tumor with low incidence but high mortality rates. Early detection and treatment are crucial for a cure. Machine learning studies have focused on classifying melanoma tumors, but these methods are cumbersome and...

Intelligent biofilm detection with ensemble of deep learning networks.

Medicina oral, patologia oral y cirugia bucal
BACKGROUND: Dental biofilm is traditionally identified visually, which can be challenging and time-consuming due to its color similarity with the tooth. The aim of this study was to evaluate the performance of U-Net neural networks for the automatic ...

Metastatic Lung Lesion Changes in Follow-up Chest CT: The Advantage of Deep Learning Simultaneous Analysis of Prior and Current Scans With SimU-Net.

Journal of thoracic imaging
PURPOSE: Radiological follow-up of oncology patients requires the detection of metastatic lung lesions and the quantitative analysis of their changes in longitudinal imaging studies. Our aim was to evaluate SimU-Net, a novel deep learning method for ...

Deep learning-based weed detection for precision herbicide application in turf.

Pest management science
BACKGROUND: Precision weed mapping in turf according to its susceptibility to selective herbicides allows the smart sprayer to spot-spray the most pertinent herbicides onto the susceptible weeds. The objective of this study was to evaluate the feasib...

A novel approach for estimating postmortem intervals under varying temperature conditions using pathology images and artificial intelligence models.

International journal of legal medicine
Estimating the postmortem interval (PMI) is a critical yet complex task in forensic investigations, with accurate and timely determination playing a key role in case resolution and legal outcomes. Traditional methods often suffer from environmental v...

Deep Learning-Assisted Diagnosis of Malignant Cerebral Edema Following Endovascular Thrombectomy.

Academic radiology
BACKGROUND: Malignant cerebral edema (MCE) is a significant complication following endovascular thrombectomy (EVT) in the treatment of acute ischemic stroke. This study aimed to develop and validate a deep learning-assisted diagnosis model based on t...