AIMC Topic: Deep Learning

Clear Filters Showing 51 to 60 of 26025 articles

Time-Gated Raman Spectroscopy Combined with Deep Learning for Rapid, Label-Free Histopathological Discrimination of Gastric Cancer.

Analytical chemistry
Gastric cancer is one of the most common malignant tumors of the digestive system, with a high mortality rate due to late-stage diagnosis. Current clinical diagnosis relies on endoscopic biopsy and histopathological analysis, which are highly depende...

Comparison of Multimodal Deep Learning Approaches for Predicting Clinical Deterioration in Ward Patients: Observational Cohort Study.

Journal of medical Internet research
BACKGROUND: Implementing machine learning models to identify clinical deterioration in the wards is associated with decreased morbidity and mortality. However, these models have high false positive rates and only use structured data.

Enhancing Pulmonary Disease Prediction Using Large Language Models With Feature Summarization and Hybrid Retrieval-Augmented Generation: Multicenter Methodological Study Based on Radiology Report.

Journal of medical Internet research
BACKGROUND: The rapid advancements in natural language processing, particularly the development of large language models (LLMs), have opened new avenues for managing complex clinical text data. However, the inherent complexity and specificity of medi...

DeepHeme, a high-performance, generalizable deep ensemble for bone marrow morphometry and hematologic diagnosis.

Science translational medicine
Cytomorphological analysis of the bone marrow aspirate (BMA) is pivotal for the diagnostic workup of a broad range of hematological disorders. However, this skill is error prone, highly complex, and time consuming. Deep learning-based models for the ...

Deep learning neural network prediction of postoperative complications in patients undergoing laparoscopic right hemicolectomy with or without CME and CVL for colon cancer: insights from SICE (Società Italiana di Chirurgia Endoscopica) CoDIG data.

Techniques in coloproctology
BACKGROUND: Postoperative complications in colorectal surgery can significantly impact patient outcomes and healthcare costs. Accurate prediction of these complications enables targeted perioperative management, improving patient safety and optimizin...

In-depth exploration of software defects and self-admitted technical debt through cutting-edge deep learning techniques.

PloS one
Most previous research focuses on finding Self-Admitted Technical Debt (SATD) or detecting bugs alone, rather to addressing the concurrent identification of both issues. These study investigations solely identify and classify the SATD or faults, with...

An ensemble-based 3D residual network for the classification of Alzheimer's disease.

PloS one
Alzheimer's disease (AD) is a common type of dementia, with mild cognitive impairment (MCI) being a key precursor. Early MCI diagnosis is crucial for slowing AD progression, but distinguishing MCI from normal controls (NC) is challenging due to subtl...

Improving lung cancer diagnosis and survival prediction with deep learning and CT imaging.

PloS one
Lung cancer is a major cause of cancer-related deaths, and early diagnosis and treatment are crucial for improving patients' survival outcomes. In this paper, we propose to employ convolutional neural networks to model the non-linear relationship bet...

High-Output Droplet Electricity Generator for Intelligent Self-Powered Biochemical Analysis.

Analytical chemistry
The detection and analysis of chemical and biological substances are crucial in fields such as pharmaceuticals, disease diagnosis food safety and environmental monitoring. However, traditional analytical methods often involve complex procedures, expe...

SCATrans: semantic cross-attention transformer for drug-drug interaction predication through multimodal biomedical data.

BMC bioinformatics
Predicting potential drug-drug interactions (DDIs) from biomedical data plays a critical role in drug therapy, drug development, drug regulation, and public health. However, it remains challenging due to the large number of possible drug combinations...