AIMC Topic: Diabetes Mellitus, Type 1

Clear Filters Showing 11 to 20 of 145 articles

Identification and validation of endoplasmic reticulum stress-related diagnostic biomarkers for type 1 diabetic cardiomyopathy based on bioinformatics and machine learning.

Frontiers in endocrinology
BACKGROUND: Diabetic cardiomyopathy (DC) is a serious complication in patients with type 1 diabetes mellitus and has become a growing public health problem worldwide. There is evidence that endoplasmic reticulum stress (ERS) is involved in the pathog...

Disease diagnostics using machine learning of B cell and T cell receptor sequences.

Science (New York, N.Y.)
Clinical diagnosis typically incorporates physical examination, patient history, various laboratory tests, and imaging studies but makes limited use of the human immune system's own record of antigen exposures encoded by receptors on B cells and T ce...

Deep learning-based prediction of autoimmune diseases.

Scientific reports
Autoimmune Diseases are a complex group of diseases caused by the immune system mistakenly attacking body tissues. Their etiology involves multiple factors such as genetics, environmental factors, and abnormalities in immune cells, making prediction ...

GARNN: An interpretable graph attentive recurrent neural network for predicting blood glucose levels via multivariate time series.

Neural networks : the official journal of the International Neural Network Society
Accurate prediction of future blood glucose (BG) levels can effectively improve BG management for people living with type 1 or 2 diabetes, thereby reducing complications and improving quality of life. The state of the art of BG prediction has been ac...

Optimizing hypoglycaemia prediction in type 1 diabetes with Ensemble Machine Learning modeling.

BMC medical informatics and decision making
BACKGROUND: Type 1 diabetes (T1D) is a chronic endocrine disorder characterized by high blood glucose levels, impacting millions of people globally. Its management requires intensive insulin therapy, frequent blood glucose monitoring, and lifestyle a...

A safe-enhanced fully closed-loop artificial pancreas controller based on deep reinforcement learning.

PloS one
Patients with type 1 diabetes and their physicians have long desired a fully closed-loop artificial pancreas (AP) system that can alleviate the burden of blood glucose regulation. Although deep reinforcement learning (DRL) methods theoretically enabl...

Predictors of glycaemic improvement in children and young adults with type 1 diabetes and very elevated HbA1c using the MiniMed 780G system.

Diabetes, obesity & metabolism
AIMS: This study aimed to identify key factors with the greatest influence on glycaemic outcomes in young individuals with type 1 diabetes (T1D) and very elevated glycaemia after 3 months of automated insulin delivery (AID).

Hybrid Control Policy for Artificial Pancreas via Ensemble Deep Reinforcement Learning.

IEEE transactions on bio-medical engineering
OBJECTIVE: The artificial pancreas (AP) shows promise for closed-loop glucose control in type 1 diabetes mellitus (T1DM). However, designing effective control policies for the AP remains challenging due to complex physiological processes, delayed ins...

Predicting and Ranking Diabetic Ketoacidosis Risk Among Youth with Type 1 Diabetes with a Clinic-to-Clinic Transferrable Machine Learning Model.

Diabetes technology & therapeutics
To use electronic health record (EHR) data to develop a scalable and transferrable model to predict 6-month risk for diabetic ketoacidosis (DKA)-related hospitalization or emergency care in youth with type 1 diabetes (T1D). To achieve a sharable pr...