AIMC Topic: Diabetes Mellitus, Type 2

Clear Filters Showing 361 to 370 of 424 articles

Machine Learning and Augmented Intelligence Enables Prognosis of Type 2 Diabetes Prior to Clinical Manifestation.

Current diabetes reviews
BACKGROUND: The global incidence of type 2 diabetes (T2D) persists at epidemic proportions. Early diagnosis and/or preventive efforts are critical to attenuate the multi-systemic clinical manifestation and consequent healthcare burden. Despite enormo...

Using Machine Learning and Artificial Intelligence to Predict Diabetes Mellitus among Women Population.

Current diabetes reviews
BACKGROUND: Diabetes Mellitus is a chronic health condition (long-lasting) due to inadequate control of blood levels of glucose. This study presents a prediction of Type 2 Diabetes Mellitus among women using various Machine Learning Algorithms deploy...

Risk prediction of integrated traditional Chinese and western medicine for diabetes retinopathy based on optimized gradient boosting classifier model.

Medicine
In order to take full advantage of traditional Chinese medicine (TCM) and western medicine, combined with machine learning technology, to study the risk factors and better risk prediction model of diabetic retinopathy (DR), and provide basis for the ...

Determinants of developing cardiovascular disease risk with emphasis on type-2 diabetes and predictive modeling utilizing machine learning algorithms.

Medicine
This research aims to enhance our comprehensive understanding of the influence of type-2 diabetes on the development of cardiovascular diseases (CVD) risk, its underlying determinants, and to construct precise predictive models capable of accurately ...

Multi-Omics Integration With Machine Learning Identified Early Diabetic Retinopathy, Diabetic Macula Edema and Anti-VEGF Treatment Response.

Translational vision science & technology
PURPOSE: Identify optimal metabolic features and pathways across diabetic retinopathy (DR) stages, develop risk models to differentiate diabetic macular edema (DME), and predict anti-vascular endothelial growth factor (anti-VEGF) therapy response.

Development and Validation of Machine Learning Models for Identifying Prediabetes and Diabetes in Normoglycemia.

Diabetes/metabolism research and reviews
BACKGROUND: Prediabetes and diabetes are both abnormal states of glucose metabolism (AGM) that can lead to severe complications. Early detection of AGM is crucial for timely intervention and treatment. However, fasting blood glucose (FBG) as a mass p...

Shaping the future of heart health.

Med (New York, N.Y.)
For World Heart Day on September 24, 2024, the World Heart Federation urges nations to endorse national strategies for enhancing cardiovascular health. While advancements show promise in reducing atherosclerosis, addressing healthcare inequalities an...

Exploring Prediabetes Pathways Using Explainable AI on Data from Electronic Medical Records.

Studies in health technology and informatics
This study leverages data from a Canadian database of primary care Electronic Medical Records to develop machine learning models predicting type 2 diabetes mellitus (T2D), prediabetes, or normoglycemia. These models are used as a basis for extracting...

Balancing Acts: Tackling Data Imbalance in Machine Learning for Predicting Myocardial Infarction in Type 2 Diabetes.

Studies in health technology and informatics
Type 2 Diabetes (T2D) is a prevalent lifelong health condition. It is predicted that over 500 million adults will be diagnosed with T2D by 2040. T2D can develop at any age, and if it progresses, it may cause serious comorbidities. One of the most cri...