AIMC Topic: Diabetes Mellitus, Type 2

Clear Filters Showing 71 to 80 of 423 articles

AntiT2DMP-Pred: Leveraging feature fusion and optimization for superior machine learning prediction of type 2 diabetes mellitus.

Methods (San Diego, Calif.)
Pancreatic α-amylase breaks down starch into isomaltose and maltose, which are further hydrolyzed by α-glucosidase in the intestine into monosaccharides, rapidly raising blood sugar levels and contributing to type 2 diabetes mellitus (T2DM). Syntheti...

Predictive models and determinants of mortality among T2DM patients in a tertiary hospital in Ghana, how do machine learning techniques perform?

BMC endocrine disorders
BACKGROUND: The increasing prevalence of type 2 diabetes mellitus (T2DM) in lower and middle - income countries call for preventive public health interventions. Studies from Africa including those from Ghana, consistently reveal high T2DM-related mor...

Type 2 diabetes prediction method based on dual-teacher knowledge distillation and feature enhancement.

Scientific reports
Diabetes prediction is an important topic in the field of medical health. Accurate prediction can help early intervention and reduce patients' health risks and medical costs. This paper proposes a data preprocessing method, including removing outlier...

Developing an AI-Based clinical decision support system for basal insulin titration in type 2 diabetes in primary Care: A Mixed-Methods evaluation using heuristic Analysis, user Feedback, and eye tracking.

International journal of medical informatics
BACKGROUND AND AIM: The progressive nature of type 2 diabetes often, in time, necessitates basal insulin therapy to achieve glycemic targets. However, despite standardized titration algorithms, many people remain poorly controlled after initiating in...

In silico design of dehydrophenylalanine containing peptide activators of glucokinase using pharmacophore modelling, molecular dynamics and machine learning: implications in type 2 diabetes.

Journal of computer-aided molecular design
Diabetes represents a significant global health challenge associated with substantial healthcare costs and therapeutic complexities. Current diabetes therapies often entail adverse effects, necessitating the exploration of novel agents. Glucokinase (...

Heterogeneous blood pressure treatment effects on cognitive decline in type 2 diabetes: A machine learning analysis of a randomized clinical trial.

Diabetes, obesity & metabolism
AIM: We aimed to identify the characteristics of patients with diabetes who can derive cognitive benefits from intensive blood pressure (BP) treatment using machine learning methods.

Mixed-effects neural network modelling to predict longitudinal trends in fasting plasma glucose.

BMC medical research methodology
BACKGROUND: Accurate fasting plasma glucose (FPG) trend prediction is important for management and treatment of patients with type 2 diabetes mellitus (T2DM), a globally prevalent chronic disease. (Generalised) linear mixed-effects (LME) models and m...

Identification and validation of the diagnostic biomarker MFAP5 for CAVD with type 2 diabetes by bioinformatics analysis.

Frontiers in immunology
INTRODUCTION: Calcific aortic valve disease (CAVD) is increasingly prevalent among the aging population, and there is a notable lack of drug therapies. Consequently, identifying novel drug targets will be of utmost importance. Given that type 2 diabe...

Potential shared mechanisms in atopic dermatitis and type 2 diabetes identified via transcriptomic and machine learning approaches.

Scientific reports
Although atopic dermatitis (AD) and type 2 diabetes mellitus (T2DM) may appear clinically and pathophysiologically unrelated, AD is a common skin disease characterized by chronic inflammation and skin barrier dysfunction, whereas T2DM is a metabolic ...