AIMC Topic: Early Detection of Cancer

Clear Filters Showing 41 to 50 of 855 articles

Explainable AI for lung cancer detection via a custom CNN on CT images.

Scientific reports
Lung cancer, which claims 1.8 million lives annually, is still one of the leading causes of cancer-related deaths globally. Patients with lung cancer frequently have a bad prognosis because of late-stage detection, which severely limits treatment opt...

Deep learning enabled liquid-based cytology model for cervical precancer and cancer detection.

Nature communications
Deep learning (DL) enabled liquid-based cytology has potential for cervical cancer screening or triage. Here, we develop a DL model using whole cytology slides from 17,397 women and test it on 10,826 additional cases through a three-stage process. Th...

Deep learning-based identification of patients at increased risk of cancer using routine laboratory markers.

Scientific reports
Early screening for cancer has proven to improve the survival rate and spare patients from intensive and costly treatments due to late diagnosis. Cancer screening in the healthy population involves an initial risk stratification step to determine the...

Transforming breast cancer diagnosis and treatment with large language Models: A comprehensive survey.

Methods (San Diego, Calif.)
Breast cancer (BrCa), being one of the most prevalent forms of cancer in women, poses many challenges in the field of treatment and diagnosis due to its complex biological mechanisms. Early and accurate diagnosis plays a fundamental role in improving...

Virtual lung screening trial (VLST): An in silico study inspired by the national lung screening trial for lung cancer detection.

Medical image analysis
Clinical imaging trials play a crucial role in advancing medical innovation but are often costly, inefficient, and ethically constrained. Virtual Imaging Trials (VITs) present a solution by simulating clinical trial components in a controlled, risk-f...

Identification of patients at risk for pancreatic cancer in a 3-year timeframe based on machine learning algorithms.

Scientific reports
Early detection of pancreatic cancer (PC) remains challenging largely due to the low population incidence and few known risk factors. However, screening in at-risk populations and detection of early cancer has the potential to significantly alter sur...

Deep learning prediction of mammographic breast density using screening data.

Scientific reports
This study investigated a series of deep learning (DL) models for the objective assessment of four categories of mammographic breast density (e.g., fatty, scattered, heterogeneously dense, and extremely dense). A retrospective analysis was conducted ...

Early detection of esophageal cancer: Evaluating AI algorithms with multi-institutional narrowband and white-light imaging data.

PloS one
Esophageal cancer is one of the most common cancers worldwide, especially esophageal squamous cell carcinoma, which is often diagnosed at a late stage and has a poor prognosis. This study aimed to develop an algorithm to detect tumors in esophageal e...

CausalCervixNet: convolutional neural networks with causal insight (CICNN) in cervical cancer cell classification-leveraging deep learning models for enhanced diagnostic accuracy.

BMC cancer
Cervical cancer is a significant global health issue affecting women worldwide, necessitating prompt detection and effective management. According to the World Health Organization (WHO), approximately 660,000 new cases of cervical cancer and 350,000 ...

Development and validation of machine learning models for early diagnosis and prognosis of lung adenocarcinoma using miRNA expression profiles.

Cancer biomarkers : section A of Disease markers
ObjectiveStudy aims to develop diagnostic and prognostic models for lung adenocarcinoma (LUAD) using Machine learning(ML)algorithms, aiming to enhance clinical decision-making accuracy.MethodsData from The Cancer Genome Atlas (TCGA) for LUAD patients...