PURPOSE: There is limited understanding of the link between exposure to heavy metals and ischemic stroke (IS). This research aimed to develop efficient and interpretable machine learning (ML) models to associate the relationship between exposure to h...
Air pollution has become a major global threat to human health. Urbanization and industrialization over the past few decades have increased the air pollution. Plausible connections have been made between air pollutants and dementia. This study used m...
There is limited evidence that heavy metals exposure contributes to osteoporosis. Multi-parameter scoring machine learning (ML) techniques were developed using National Health and Nutrition Examination Survey data to predict osteoporosis based on hea...
Pesticides typically co-occur in agricultural surface waters and pose a potential threat to human and ecosystem health. As pesticide screening in global agricultural surface waters is an immense analytical challenge, a detailed risk picture of pestic...
Age-related macular degeneration (AMD) is the leading cause of blindness in older people in developed countries. It has been suggested that heavy metal exposure may be associated with the development of AMD, but most studies have focused on the effec...
BACKGROUND: Cardiovascular disease (CVD) remains a leading cause of mortality globally. Environmental pollutants, specifically volatile organic compounds (VOCs), have been identified as significant risk factors. This study aims to develop a machine l...
Environmental science and pollution research international
39394473
Evaluation of the heterogeneous treatment effect (HTE) allows for the assessment of the causal effect of a therapy or intervention while considering heterogeneity in individual factors within a population. Machine learning (ML) methods have previousl...
IN BRIEF: Clinical drug trials often do not include pregnant people due to health risks; therefore, many medications have an unknown effect on the developing fetus. Machine learning QSAR models have been used successfully to predict the fetal risk of...
The lack of high-resolution, long-term PM observations in Greece and the Eastern Mediterranean hampers the development of spatial models that are crucial for providing representative exposure estimates to health studies. This work presents a spatial ...
Chronic exposure to arsenic is linked to the development of cancers in the skin, lungs, and bladder. Arsenic exposure manifests as variegated pigmentation and characteristic pitted keratosis on the hands and feet, which often precede the onset of int...