AIMC Topic: Female

Clear Filters Showing 1901 to 1910 of 27113 articles

A study on factors influencing digital sports participation among Chinese secondary school students based on explainable machine learning.

Scientific reports
This study utilized data from 4,925 Hong Kong students in the 2018 Programme for International Student Assessment (PISA) to investigate factors influencing secondary school students' use of digital devices for sports participation and their threshold...

Advanced holographic convolutional dense networks and Tangent runner optimization for enhanced polycystic ovarian disease classification.

Scientific reports
Polycystic Ovarian Disease (PCOD) is among the most prevalent endocrine disorders complicating the health of innumerable women worldwide due to lack of diagnosis and appropriate management. The diagnosis of PCOD, along with proper classification with...

Systematic Identification of Caregivers of Patients Living With Dementia in the Electronic Health Record: Known Contacts and Natural Language Processing Cohort Study.

Journal of medical Internet research
BACKGROUND: Systemically identifying caregivers in the electronic health record (EHR) is a critical step for delivering patient-centered care, enhancing care coordination, and advancing research and population health efforts in caregiving. Despite EH...

Enhancing Cardiopulmonary Resuscitation Quality Using a Smartwatch: Neural Network Approach for Algorithm Development and Validation.

JMIR mHealth and uHealth
BACKGROUND: Sudden cardiac arrest is a major cause of mortality, necessitating immediate and high-quality cardiopulmonary resuscitation (CPR) for improved survival rates. High-quality CPR is defined by chest compressions at a rate of 100-120 per minu...

Adopting machine learning to predict nomogram for small incision lenticule extraction (SMILE).

International ophthalmology
PURPOSE: To predict nomogram for small incision lenticule extraction (SMILE) using machine learning technology and preoperative clinical data.

Referral patterns, influencing factors, and satisfaction related to referrals of patients with rheumatic diseases to other healthcare professionals: an online survey of rheumatologists.

Rheumatology international
Managing rheumatic diseases requires teamwork, but referral patterns and challenges remain poorly understood. This study explored rheumatologists' perspectives on referral patterns in the Gulf countries. We conducted a web-based, 21-question cross-se...

Training, Validating, and Testing Machine Learning Prediction Models for Endometrial Cancer Recurrence.

JCO precision oncology
PURPOSE: Endometrial cancer (EC) is the most common gynecologic cancer in the United States with rising incidence and mortality. Despite optimal treatment, 15%-20% of all patients will recur. To better select patients for adjuvant therapy, it is impo...

Predicting and Evaluating Cognitive Status in Aging Populations Using Decision Tree Models.

American journal of Alzheimer's disease and other dementias
To improve the identification of cognitive impairment by distinguishing normal cognition (NC), mild cognitive impairment (MCI), and Alzheimer's disease (AD). A recursive partitioning tree model was developed using ARMADA data and the NIH Toolbox, a...

Classification of Neuropsychiatric Disorders via Brain-Region-Selected Graph Convolutional Network.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
For the classification of patients with neuropsychiatric disorders based on rs-fMRI data, this paper proposed a Brain-Region-Selected graph convolutional network (BRS-GCN). In order to effectively identify the most significant biomarkers associated w...

Development and Validation of the Novel Exergame-Integrated Robotic Stepper Device for Seated Lower Limb Rehabilitation.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Seated rehabilitation is essential in early-stage recovery for patients who can sit but cannot stand or walk. Robotic-based lower limb rehabilitation provides precise, task-specific training for recovery, but its application in seated exercises remai...