AI Medical Compendium Topic:
Genomics

Clear Filters Showing 691 to 700 of 952 articles

Improvement in genomic prediction of maize with prior gene ontology information depends on traits and environmental conditions.

The plant genome
Classical genomic prediction approaches rely on statistical associations between traits and markers rather than their biological significance. Biologically informed selection of genomic regions can help prioritize polymorphisms by considering underly...

Deep learning-based cell-specific gene regulatory networks inferred from single-cell multiome data.

Nucleic acids research
Gene regulatory networks (GRNs) provide a global representation of how genetic/genomic information is transferred in living systems and are a key component in understanding genome regulation. Single-cell multiome data provide unprecedented opportunit...

Assessing the performance of generative artificial intelligence in retrieving information against manually curated genetic and genomic data.

Database : the journal of biological databases and curation
Curated resources at centralized repositories provide high-value service to users by enhancing data veracity. Curation, however, comes with a cost, as it requires dedicated time and effort from personnel with deep domain knowledge. In this paper, we ...

Integrative machine learning approach for identification of new molecular scaffold and prediction of inhibition responses in cancer cells using multi-omics data.

Briefings in functional genomics
MDM2 (Mouse Double Minute 2), a fundamental governor of the p53 tumor suppressor pathway, has garnered significant attention as a favorable target for cancer therapy. Recent years have witnessed the development and synthesis of potent MDM2 inhibitors...

Beyond the hype: using AI, big data, wearable devices, and the internet of things for high-throughput livestock phenotyping.

Briefings in functional genomics
Phenotyping of animals is a routine task in agriculture which can provide large datasets for the functional annotation of genomes. Using the livestock farming sector to study complex traits enables genetics researchers to fully benefit from the digit...

Using core genome and machine learning for serovar prediction in Salmonella enterica subspecies I strains.

FEMS microbiology letters
This study presents a dual investigation of Salmonella enterica subspecies I, focusing on serovar prediction and core genome characteristics. We utilized two large genomic datasets (panX and NCBI Pathogen Detection) to test machine learning methods f...

PanKB: An interactive microbial pangenome knowledgebase for research, biotechnological innovation, and knowledge mining.

Nucleic acids research
The exponential growth of microbial genome data presents unprecedented opportunities for unlocking the potential of microorganisms. The burgeoning field of pangenomics offers a framework for extracting insights from this big biological data. Recent a...

A Machine Learning Pipeline to Screen Large In Vivo Molecular Data to Curate Disease Signatures of High Translational Potential.

Methods in molecular biology (Clifton, N.J.)
A significantly low success rate of human clinical studies has long been attributed to a capability gap, namely, an ineffective translation of the animal data to the human context. To bridge this capability gap, several correcting measures have been ...

Applying AI/ML for Analyzing Gene Expression Patterns.

Methods in molecular biology (Clifton, N.J.)
Artificial intelligence (AI) and machine learning (ML) have advanced in several areas and fields of life; however, its progress in the field of genomics is not matching the levels others have achieved. Challenges include but are not limited to the ha...

Unveiling Long Non-coding RNA Networks from Single-Cell Omics Data Through Artificial Intelligence.

Methods in molecular biology (Clifton, N.J.)
Single-cell omics technologies have revolutionized the study of long non-coding RNAs (lncRNAs), offering unprecedented resolution in elucidating their expression dynamics, cell-type specificity, and associated gene regulatory networks (GRNs). Concurr...