AIMC Topic: Gray Matter

Clear Filters Showing 11 to 20 of 109 articles

A quantitatively interpretable model for Alzheimer's disease prediction using deep counterfactuals.

NeuroImage
Deep learning (DL) for predicting Alzheimer's disease (AD) has provided timely intervention in disease progression yet still demands attentive interpretability to explain how their DL models make definitive decisions. Counterfactual reasoning has rec...

Research on noise-induced hearing loss based on functional and structural MRI using machine learning methods.

Scientific reports
Noise-induced hearing loss (NIHL) is a common occupational condition. The aim of this study was to develop a classification model for NIHL on the basis of both functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sM...

Multimodal multiview bilinear graph convolutional network for mild cognitive impairment diagnosis.

Biomedical physics & engineering express
Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease (AD) and can serve as an important indicator of disease progression. However, many existing methods focus mainly on the image when processing b...

ds-FCRN: three-dimensional dual-stream fully convolutional residual networks and transformer-based global-local feature learning for brain age prediction.

Brain structure & function
The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive...

Differentiation between multiple sclerosis and neuromyelitis optic spectrum disorders with multilevel fMRI features: A machine learning analysis.

Scientific reports
The conventional statistical approach for analyzing resting state functional MRI (rs-fMRI) data struggles to accurately distinguish between patients with multiple sclerosis (MS) and those with neuromyelitis optic spectrum disorders (NMOSD), highlight...

Differential gray matter correlates and machine learning prediction of abuse and internalizing psychopathology in adolescent females.

Scientific reports
Childhood abuse represents one of the most potent risk factors for the development of psychopathology during childhood, accounting for 30-60% of the risk for onset. While previous studies have separately associated reductions in gray matter volume (G...

Development of a short form of the Geriatric Depression Scale-30 based on item response theory and the RiskSLIM algorithm.

General hospital psychiatry
Recently, methods of quickly and accurately screening for geriatric depression have attracted substantial attention. Short forms of the 30-item Geriatric Depression Scale have been developed based on classical test theory, such as the GDS-4, GDS-5, a...

A Machine learning classification framework using fused fractal property feature vectors for Alzheimer's disease diagnosis.

Brain research
Alzheimer's disease (AD) profoundly affects brain tissue and network structures. Analyzing the topological properties of these networks helps to understand the progression of the disease. Most studies focus on single-scale brain networks, but few add...

A Parkinson's disease-related nuclei segmentation network based on CNN-Transformer interleaved encoder with feature fusion.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Automatic segmentation of Parkinson's disease (PD) related deep gray matter (DGM) nuclei based on brain magnetic resonance imaging (MRI) is significant in assisting the diagnosis of PD. However, due to the degenerative-induced changes in appearance, ...

The phobic brain: Morphometric features correctly classify individuals with small animal phobia.

Psychophysiology
Specific phobia represents an anxiety disorder category characterized by intense fear generated by specific stimuli. Among specific phobias, small animal phobia (SAP) denotes a particular condition that has been poorly investigated in the neuroscient...