AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Heart Failure

Showing 91 to 100 of 425 articles

Clear Filters

Classification tree obtained by artificial intelligence for the prediction of heart failure after acute coronary syndromes.

Medicina clinica
BACKGROUND: Coronary heart disease is the leading cause of heart failure (HF), and tools are needed to identify patients with a higher probability of developing HF after an acute coronary syndrome (ACS). Artificial intelligence (AI) has proven to be ...

A machine learning-based lung ultrasound algorithm for the diagnosis of acute heart failure.

Internal and emergency medicine
Lung ultrasound (LUS) is an effective tool for diagnosing acute heart failure (AHF). However, several imaging protocols currently exist and how to best use LUS remains undefined. We aimed at developing a lung ultrasound-based model for AHF diagnosis ...

The intelligent Impella: Future perspectives of artificial intelligence in the setting of Impella support.

ESC heart failure
AIMS: Artificial intelligence (AI) has emerged as a potential useful tool to support clinical treatment of heart failure, including the setting of mechanical circulatory support (MCS). Modern Impella pumps are equipped with advanced technology (Smart...

Predicting 1 year readmission for heart failure: A comparative study of machine learning and the LACE index.

ESC heart failure
AIMS: There is a lack of tools for accurately identifying the risk of readmission for heart failure in elderly patients with arrhythmia. The aim of this study was to establish and compare the performance of the LACE [length of stay ('L'), acute (emer...

Machine learning of ECG waveforms and cardiac magnetic resonance for response and survival after cardiac resynchronization therapy.

Computers in biology and medicine
Cardiac resynchronization therapy (CRT) can lead to marked symptom reduction and improved survival in selected patients with heart failure with reduced ejection fraction (HFrEF); however, many candidates for CRT based on clinical guidelines do not ha...

A machine learning approach to classifying New York Heart Association (NYHA) heart failure.

Scientific reports
According to the European Society of Cardiology, globally the number of patients with heart failure nearly doubled from 33.5 million in 1990 to 64.3 million in 2017, and is further projected to increase dramatically in this decade, still remaining a ...

Machine Learning-Based Mortality Prediction in Chronic Kidney Disease among Heart Failure Patients: Insights and Outcomes from the Jordanian Heart Failure Registry.

Medicina (Kaunas, Lithuania)
Heart failure (HF) is a prevalent and debilitating condition that imposes a significant burden on healthcare systems and adversely affects the quality of life of patients worldwide. Comorbidities such as chronic kidney disease (CKD), arterial hypert...

Development of interpretable machine learning models to predict in-hospital prognosis of acute heart failure patients.

ESC heart failure
AIMS: In recent years, there has been remarkable development in machine learning (ML) models, showing a trend towards high prediction performance. ML models with high prediction performance often become structurally complex and are frequently perceiv...

Applying natural language processing to identify emergency department and observation encounters for worsening heart failure.

ESC heart failure
AIMS: Worsening heart failure (WHF) events occurring in non-inpatient settings are becoming increasingly recognized, with implications for prognostication. We evaluate the performance of a natural language processing (NLP)-based approach compared wit...

Prediction of heart failure patients with distinct left ventricular ejection fraction levels using circadian ECG features and machine learning.

PloS one
Heart failure (HF) encompasses a diverse clinical spectrum, including instances of transient HF or HF with recovered ejection fraction, alongside persistent cases. This dynamic condition exhibits a growing prevalence and entails substantial healthcar...