AIMC Topic: HeLa Cells

Clear Filters Showing 41 to 50 of 100 articles

Identification of the human DPR core promoter element using machine learning.

Nature
The RNA polymerase II (Pol II) core promoter is the strategic site of convergence of the signals that lead to the initiation of DNA transcription, but the downstream core promoter in humans has been difficult to understand. Here we analyse the human ...

A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes.

Nature communications
Chemoproteomics is a key technology to characterize the mode of action of drugs, as it directly identifies the protein targets of bioactive compounds and aids in the development of optimized small-molecule compounds. Current approaches cannot identif...

Accurate prediction of species-specific 2-hydroxyisobutyrylation sites based on machine learning frameworks.

Analytical biochemistry
Lysine 2-hydroxyisobutyrylation (K) is a newly discovered post-translational modification (PTM) across eukaryotes and prokaryotes in recent years, which plays a significant role in diverse cellular functions. Accurate prediction of K sites is a first...

Robust classification of cell cycle phase and biological feature extraction by image-based deep learning.

Molecular biology of the cell
Across the cell cycle, the subcellular organization undergoes major spatiotemporal changes that could in principle contain biological features that could potentially represent cell cycle phase. We applied convolutional neural network-based classifier...

A Novel System for Functional Determination of Variants of Uncertain Significance using Deep Convolutional Neural Networks.

Scientific reports
Many drugs are developed for commonly occurring, well studied cancer drivers such as vemurafenib for BRAF V600E and erlotinib for EGFR exon 19 mutations. However, most tumors also harbor mutations which have an uncertain role in disease formation, co...

In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics.

Nature communications
Data-independent acquisition (DIA) is an emerging technology for quantitative proteomic analysis of large cohorts of samples. However, sample-specific spectral libraries built by data-dependent acquisition (DDA) experiments are required prior to DIA ...

MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks.

BMC genomics
BACKGROUND: Tandem mass spectrometry allows biologists to identify and quantify protein samples in the form of digested peptide sequences. When performing peptide identification, spectral library search is more sensitive than traditional database sea...

Graphene quantum dots as singlet oxygen producer or radical quencher - The matter of functionalization with urea/thiourea.

Materials science & engineering. C, Materials for biological applications
Due to their low cost and possible green synthesis, high stability and resistance to photobleaching, graphene quantum dots (GQDs) can be considered as one of the class of carbon nanomaterials which may have great potential as an agent for photosensit...

DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput.

Nature methods
We present an easy-to-use integrated software suite, DIA-NN, that exploits deep neural networks and new quantification and signal correction strategies for the processing of data-independent acquisition (DIA) proteomics experiments. DIA-NN improves t...

Optimized CRISPR guide RNA design for two high-fidelity Cas9 variants by deep learning.

Nature communications
Highly specific Cas9 nucleases derived from SpCas9 are valuable tools for genome editing, but their wide applications are hampered by a lack of knowledge governing guide RNA (gRNA) activity. Here, we perform a genome-scale screen to measure gRNA acti...