INTRODUCTION: Prediction of outcomes following allogeneic hematopoietic cell transplantation (HCT) remains a major challenge. Machine learning (ML) is a computational procedure that may facilitate the generation of HCT prediction models. We sought to...
Allogeneic haematopoietic cell transplantation (alloHCT) has curative potential counterbalanced by its toxicity. Prognostic scores fail to include current era patients and alternative donors. We examined adult patients from the EBMT registry who unde...
In a first-of-its-kind study, we assessed the capabilities of large language models (LLMs) in making complex decisions in haematopoietic stem cell transplantation. The evaluation was conducted not only for Generative Pre-trained Transformer 4 (GPT-4)...
Patients with hematological malignancy experience physical and psychological pain, such as a sense of isolation and confinement due to intensive chemotherapy in a protective isolation unit (PIU). We examined whether the intervention of a robotic pupp...
BACKGROUND: Hematopoietic stem cell transplantation (HSCT) is a procedure with high morbidity and mortality. Identifying patients for maximum benefit and risk assessment is crucial in the decision-making process. This has led to the development of pr...
Orphan diseases, exemplified by T-cell prolymphocytic leukemia, present inherent challenges due to limited data availability and complexities in effective care. This study delves into harnessing the potential of machine learning to enhance care strat...
Infection post-hematopoietic stem cell transplantation (HSCT) is one of the main causes of patient mortality. Fever is the most crucial clinical symptom indicating infection. However, current microbial detection methods are limited. Therefore, timely...
Artificial intelligence (AI)-enabled interpretation of electrocardiogram (ECG) images (AI-ECGs) can identify patterns predictive of future adverse cardiac events. We hypothesized that such an approach would provide prognostic information for the risk...