This paper introduces a novel approach to enhance the classification accuracy of hemodynamic response function (HRF) signals acquired through functional near-infrared spectroscopy (fNIRS). Leveraging a semi-supervised learning (SSL) framework alongsi...
Computer methods and programs in biomedicine
39326359
BACKGROUND AND OBJECTIVE: Computational models of hemodynamics can contribute to optimizing surgical plans, and improve our understanding of cardiovascular diseases. Recently, machine learning methods have become essential to reduce the computational...
Journal of clinical monitoring and computing
39305449
Blood pressure is a very important clinical measurement, offering valuable insights into the hemodynamic status of patients. Regular monitoring is crucial for early detection, prevention, and treatment of conditions like hypotension and hypertension,...
Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
39533658
Arterial stiffness has emerged as a prominent marker of risk for cardiovascular diseases. Few studies are interested in predicting symptomatic or asymptomatic arterial stiffness from hemodynamics and biomechanics parameters. Machine learning models c...
Monitoring cerebral oxygenation and metabolism, using a combination of invasive and non-invasive sensors, is vital due to frequent disruptions in hemodynamic regulation across various diseases. These sensors generate continuous high-frequency data st...
Hemodynamic stabilization is crucial in managing acute cardiac events, where compromised blood flow can lead to severe complications and increased mortality. Conditions like decompensated heart failure (HF) and cardiogenic shock require rapid and eff...
BACKGROUND: Physics-informed neural networks (PINNs) are increasingly being used to model cardiovascular blood flow. The accuracy of PINNs is dependent on flow complexity and could deteriorate in the presence of highly-dynamical blood flow conditions...
Aortic stenosis (AS) is the most common valvular heart disease in developed countries. High-fidelity preclinical models can improve AS management by enabling therapeutic innovation, early diagnosis, and tailored treatment planning. However, their use...
Estimating the high-resolution (HR) blood flow velocity and pressure fields for the diagnosis and treatment of vascular diseases remains challenging.. In this study, a physics-informed neural network (PINN) with a refined mapping capability was combi...
Closed pelvic fractures can lead to severe complications, including hemodynamic instability (HI) and mortality. Accurate prediction of these risks is crucial for effective clinical management. This study aimed to utilize various machine learning (ML)...