AIMC Topic: Idiopathic Pulmonary Fibrosis

Clear Filters Showing 11 to 20 of 61 articles

Common biomarkers of idiopathic pulmonary fibrosis and systemic sclerosis based on WGCNA and machine learning.

Scientific reports
Interstitial lung disease (ILD) is known to be a major complication of systemic sclerosis (SSc) and a leading cause of death in SSc patients. As the most common type of ILD, the pathogenesis of idiopathic pulmonary fibrosis (IPF) has not been fully e...

Prognostic value of a composite physiologic index developed by adding bronchial and hyperlucent volumes quantified via artificial intelligence technology.

Respiratory research
BACKGROUND: The composite physiologic index (CPI) was developed to estimate the extent of interstitial lung disease (ILD) in idiopathic pulmonary fibrosis (IPF) patients based on pulmonary function tests (PFTs). The CALIPER-revised version of the CPI...

Integrating machine learning with bioinformatics for predicting idiopathic pulmonary fibrosis prognosis: developing an individualized clinical prediction tool.

Experimental biology and medicine (Maywood, N.J.)
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial lung disease with a poor prognosis. Its non-specific clinical symptoms make accurate prediction of disease progression challenging. This study aimed to develop molecular-level prognostic m...

Integrating cellular experiments, single-cell sequencing, and machine learning to identify endoplasmic reticulum stress biomarkers in idiopathic pulmonary fibrosis.

Annals of medicine
BACKGROUND: Idiopathic Pulmonary Fibrosis (IPF) presents a severe respiratory challenge with a poor prognosis due to the lack of reliable biomarkers. Recent evidence suggests that Endoplasmic Reticulum Stress (ERS) may be associated with IPF pathogen...

Identification of immune patterns in idiopathic pulmonary fibrosis patients driven by PLA2G7-positive macrophages using an integrated machine learning survival framework.

Scientific reports
Patients with advanced idiopathic pulmonary fibrosis (IPF), a complex and incurable lung disease with an elusive pathology, are nearly exclusive candidates for lung transplantation. Improved identification of patient subtypes can enhance early diagno...

Construction of an artificial neural network diagnostic model and investigation of immune cell infiltration characteristics for idiopathic pulmonary fibrosis.

BMC pulmonary medicine
BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a severe lung condition, and finding better ways to diagnose and treat the disease is crucial for improving patient outcomes. Our study sought to develop an artificial neural network (ANN) model for ...

Novel AT2 Cell Subpopulations and Diagnostic Biomarkers in IPF: Integrating Machine Learning with Single-Cell Analysis.

International journal of molecular sciences
Idiopathic pulmonary fibrosis (IPF) is a long-term condition with an unidentified cause, and currently there are no specific treatment options available. Alveolar epithelial type II cells (AT2) constitute a heterogeneous population crucial for secret...

IPF-related new macrophage subpopulations and diagnostic biomarker identification - combine machine learning with single-cell analysis.

Respiratory research
Idiopathic pulmonary fibrosis (IPF) is a chronic disease of unknown etiology that lacks a specific treatment. In IPF, macrophages play a key regulatory role as a major component of the lung immune system, especially during inflammation and fibrosis. ...

Machine learning classifier is associated with mortality in interstitial lung disease: a retrospective validation study leveraging registry data.

BMC pulmonary medicine
BACKGROUND: Mortality prediction in interstitial lung disease (ILD) poses a significant challenge to clinicians due to heterogeneity across disease subtypes. Currently, forced vital capacity (FVC) and Gender, Age, and Physiology (GAP) score are the t...