AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Image Interpretation, Computer-Assisted

Showing 141 to 150 of 2623 articles

Clear Filters

Image quality and diagnostic performance of deep learning reconstruction for diffusion- weighted imaging in 3 T breast MRI.

European journal of radiology
PURPOSE: This study aimed to assess the image quality and the diagnostic value of deep learning reconstruction (DLR) for diffusion-weighted imaging (DWI) compared with conventional single-shot echo-planar imaging (ss-EPI) in 3 T breast MRI.

Automation bias in AI-assisted detection of cerebral aneurysms on time-of-flight MR angiography.

La Radiologia medica
PURPOSE: To determine how automation bias (inclination of humans to overly trust-automated decision-making systems) can affect radiologists when interpreting AI-detected cerebral aneurysm findings in time-of-flight magnetic resonance angiography (TOF...

Cross prior Bayesian attention with correlated inception and residual learning for brain tumor classification using MR images (CB-CIRL Net).

Journal of neuroscience methods
BACKGROUND: Brain tumor classification from magnetic resonance (MR) images is crucial for early diagnosis and effective treatment planning. However, the homogeneity of tumors across different categories poses a challenge. Although, attention-based co...

Artificial intelligence in digital pathology - time for a reality check.

Nature reviews. Clinical oncology
The past decade has seen the introduction of artificial intelligence (AI)-based approaches aimed at optimizing several workflows across many medical specialties. In clinical oncology, the most promising applications include those involving image anal...

Review on computational methods for the detection and classification of Parkinson's Disease.

Computers in biology and medicine
BACKGROUND AND OBJECTIVE: The worldwide estimates reveal two-fold increase in incidence of Parkinson's disease (PD) over 25 years. The two-fold increased incidence and lack of proper treatment uplifted a compelling solicitude, nagging towards accurat...

Multi-modality medical image classification with ResoMergeNet for cataract, lung cancer, and breast cancer diagnosis.

Computers in biology and medicine
The variability in image modalities presents significant challenges in medical image classification, as traditional deep learning models often struggle to adapt to different image types, leading to suboptimal performance across diverse datasets. This...

Use of deep learning-accelerated T2 TSE for prostate MRI: Comparison with and without hyoscine butylbromide admission.

Magnetic resonance imaging
OBJECTIVE: To investigate the use of deep learning (DL) T2-weighted turbo spin echo (TSE) imaging sequence with deep learning acceleration (T2DL) in prostate MRI regarding the necessity of hyoscine butylbromide (HBB) administration for high image qua...

EDSRNet: An Enhanced Decoder Semantic Recovery Network for 2D Medical Image Segmentation.

IEEE journal of biomedical and health informatics
In recent years, with the advancement of medical imaging technology, medical image segmentation has played a key role in assisting diagnosis and treatment planning. Current deep learning-based medical image segmentation methods mainly adopt encoder-d...

PFPRNet: A Phase-Wise Feature Pyramid With Retention Network for Polyp Segmentation.

IEEE journal of biomedical and health informatics
Early detection of colonic polyps is crucial for the prevention and diagnosis of colorectal cancer. Currently, deep learning-based polyp segmentation methods have become mainstream and achieved remarkable results. Acquiring a large number of labeled ...

M-NET: Transforming Single Nucleotide Variations Into Patient Feature Images for the Prediction of Prostate Cancer Metastasis and Identification of Significant Pathways.

IEEE journal of biomedical and health informatics
High-performance prediction of prostate cancer metastasis based on single nucleotide variations remains a challenge. Therefore, we developed a novel biologically informed deep learning framework, named M-NET, for the prediction of prostate cancer met...