AIMC Topic: Image Processing, Computer-Assisted

Clear Filters Showing 651 to 660 of 9593 articles

Integrating radiomics and gene expression by mapping on the image with improved DeepInsight for clear cell renal cell carcinoma.

Cancer genetics
BACKGROUND: Radiomics analysis extracts high-dimensional features from medical images, which are used to predict outcomes in machine learning (ML). Recently, deep-learning methods have become applicable to image data converted from nonimage samples.

A unique AI-based tool for automated segmentation of pulp cavity structures in maxillary premolars on CBCT.

Scientific reports
To develop and validate an artificial intelligence (AI)-driven tool for the automatic segmentation of pulp cavity structures in maxillary premolars teeth on cone-beam computed tomography (CBCT). One hundred and eleven CBCT scans were divided into tra...

Rethinking Copy-Paste for Consistency Learning in Medical Image Segmentation.

IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Semi-supervised learning based on consistency learning offers significant promise for enhancing medical image segmentation. Current approaches use copy-paste as an effective data perturbation technique to facilitate weak-to-strong consistency learnin...

Unsupervised cross-modality domain adaptation via source-domain labels guided contrastive learning for medical image segmentation.

Medical & biological engineering & computing
Unsupervised domain adaptation (UDA) offers a promising approach to enhance discriminant performance on target domains by utilizing domain adaptation techniques. These techniques enable models to leverage knowledge from the source domain to adjust to...

Taylor-dingo optimized RP-net for segmentation toward Alzheimer's disease detection and classification using deep learning.

Computational biology and chemistry
Alzheimer's Disease (AD) is a significant cause of mortality in elderly people. The diagnosing and classification of AD using conventional manual operation is a challenging issue. Here, a novel scheme, namely Recurrent Prototypical Network with Taylo...

3D velocity and pressure field reconstruction in the cardiac left ventricle via physics informed neural network from echocardiography guided by 3D color Doppler.

Computer methods and programs in biomedicine
Fluid dynamics of the heart chamber can provide critical biological cues for understanding cardiac health and disease and have the potential for supporting diagnosis and prognosis. However, directly acquiring fluid dynamics information from clinical ...

Evaluation and failure analysis of four commercial deep learning-based autosegmentation software for abdominal organs at risk.

Journal of applied clinical medical physics
PURPOSE: Deep learning-based segmentation of organs-at-risk (OAR) is emerging to become mainstream in clinical practice because of the superior performance over atlas and model-based autocontouring methods. While several commercial deep learning-base...

Unraveling microglial spatial organization in the developing human brain with DeepCellMap, a deep learning approach coupled with spatial statistics.

Nature communications
Mapping cellular organization in the developing brain presents significant challenges due to the multidimensional nature of the data, characterized by complex spatial patterns that are difficult to interpret without high-throughput tools. Here, we pr...

Evaluating normative representation learning in generative AI for robust anomaly detection in brain imaging.

Nature communications
Normative representation learning focuses on understanding the typical anatomical distributions from large datasets of medical scans from healthy individuals. Generative Artificial Intelligence (AI) leverages this attribute to synthesize images that ...

MLAR-UNet: LDCT image denoising based on U-Net with multiple lightweight attention-based modules and residual reinforcement.

Physics in medicine and biology
Computed tomography (CT) is a crucial medical imaging technique which uses x-ray radiation to identify cancer tissues. Since radiation poses a significant health risk, low dose acquisition procedures need to be adopted. However, low-dose CT (LDCT) ca...