AIMC Topic: Infant

Clear Filters Showing 91 to 100 of 947 articles

Machine Learning-Based Pediatric Early Warning Score: Patient Outcomes in a Pre- Versus Post-Implementation Study, 2019-2023.

Pediatric critical care medicine : a journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies
OBJECTIVES: To describe the deployment of pediatric Calculated Assessment of Risk and Triage (pCART), a machine learning (ML) model to predict the risk of the direct ward to the ICU transfer within 12 hours, and the associated improved outcomes among...

Deep learning radiomics nomogram for preoperatively identifying moderate-to-severe chronic cholangitis in children with pancreaticobiliary maljunction: a multicenter study.

BMC medical imaging
BACKGROUND: Long-term severe cholangitis can lead to dense adhesions and increased fragility of the bile duct, complicating surgical procedures and elevating operative risk in children with pancreaticobiliary maljunction (PBM). Consequently, preopera...

Interoperable Models for Identifying Critically Ill Children at Risk of Neurologic Morbidity.

JAMA network open
IMPORTANCE: Decreasing mortality in the field of pediatric critical care medicine has shifted practicing clinicians' attention to preserving patients' neurodevelopmental potential as a main objective. Earlier identification of critically ill children...

Synergistic modeling of hemorrhagic dengue fever: Passive immunity dynamics and time-delay neural network analysis.

Computational biology and chemistry
Dengue fever poses a formidable epidemiological challenge, particularly for vulnerable groups such as infants. This research paper establishes a mathematical model to describe the dynamics of secondary immunity in infants against dengue hemorrhagic f...

Individual risk and prognostic value prediction by interpretable machine learning for distant metastasis in neuroblastoma: A population-based study and an external validation.

International journal of medical informatics
PURPOSE: Neuroblastoma (NB) is a childhood malignancy with a poor prognosis and a propensity for distant metastasis (DM). We aimed to establish machine learning (ML) based model to accurately predict risk of DM and prognosis of NB patients with DM.

Decision tree-based learning and laboratory data mining: an efficient approach to amebiasis testing.

Parasites & vectors
BACKGROUND: Amebiasis represents a significant global health concern. This is especially evident in developing countries, where infections are more common. The primary diagnostic method in laboratories involves the microscopy of stool samples. Howeve...

Explore the factors related to the death of offspring under age five and appraise the hazard of child mortality using machine learning techniques in Bangladesh.

BMC public health
BACKGROUND: Child mortality is a reliable and significant indicator of a nation's health. Although the child mortality rate in Bangladesh is declining over time, it still needs to drop even more in order to meet the Sustainable Development Goals (SDG...

Development and validation of machine learning-based prediction model for central venous access device-related thrombosis in children.

Thrombosis research
BACKGROUND: Identifying independent risk factors and implementing high-quality assessment tools for early detection of patients at high risk of central venous access device (CVAD)-related thrombosis (CRT) plays a critical role in delivering timely pr...

A pediatric emergency prediction model using natural language process in the pediatric emergency department.

Scientific reports
This study developed a predictive model using deep learning (DL) and natural language processing (NLP) to identify emergency cases in pediatric emergency departments. It analyzed 87,759 pediatric cases from a South Korean tertiary hospital (2012-2021...

Prediction of surgical necessity in children with ureteropelvic junction obstruction using machine learning.

Irish journal of medical science
BACKGROUND: Hydronephrosis developing at the ureteropelvic junction due to obstruction poses clinical challenges as it has the potential to cause renal damage.