AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Infant

Showing 151 to 160 of 878 articles

Clear Filters

Development and validation of machine-learning models of diet management for hyperphenylalaninemia: a multicenter retrospective study.

BMC medicine
BACKGROUND: Assessing dietary phenylalanine (Phe) tolerance is crucial for managing hyperphenylalaninemia (HPA) in children. However, traditionally, adjusting the diet requires significant time from clinicians and parents. This study aims to investig...

Proteomics profiling and machine learning in nusinersen-treated patients with spinal muscular atrophy.

Cellular and molecular life sciences : CMLS
AIM: The availability of disease-modifying therapies and newborn screening programs for spinal muscular atrophy (SMA) has generated an urgent need for reliable prognostic biomarkers to classify patients according to disease severity. We aim to identi...

Etiological stratification and prognostic assessment of haemophagocytic lymphohistiocytosis by machine learning on onco-mNGS data and clinical data.

Frontiers in immunology
INTRODUCTION: Hemophagocytic lymphohistiocytosis (HLH) is a rare, complicated and life threatening hyperinflammatory syndrome that maybe triggered by various infectious agents, malignancies and rheumatologic disorders. Early diagnosis and identificat...

A machine learning model for early diagnosis of type 1 Gaucher disease using real-life data.

Journal of clinical epidemiology
OBJECTIVE: The diagnosis of Gaucher disease (GD) presents a major challenge due to the high variability and low specificity of its clinical characteristics, along with limited physician awareness of the disease's early symptoms. Early and accurate di...

Plasma cell-free RNA signatures of inflammatory syndromes in children.

Proceedings of the National Academy of Sciences of the United States of America
Inflammatory syndromes, including those caused by infection, are a major cause of hospital admissions among children and are often misdiagnosed because of a lack of advanced molecular diagnostic tools. In this study, we explored the utility of circul...

Machine learning-enhanced electrical impedance myography to diagnose and track spinal muscular atrophy progression.

Physiological measurement
To evaluate electrical impedance myography (EIM) in conjunction with machine learning (ML) to detect infantile spinal muscular atrophy (SMA) and disease progression.. Twenty-six infants with SMA and twenty-seven healthy infants had been enrolled and ...

A developmental model of audio-visual attention (MAVA) for bimodal language learning in infants and robots.

Scientific reports
A social individual needs to effectively manage the amount of complex information in his or her environment relative to his or her own purpose to obtain relevant information. This paper presents a neural architecture aiming to reproduce attention mec...

Prediction of delayed breastfeeding initiation among mothers having children less than 2 months of age in East Africa: application of machine learning algorithms.

Frontiers in public health
BACKGROUND: Delayed breastfeeding initiation is a significant public health concern, and reducing the proportion of delayed breastfeeding initiation in East Africa is a key strategy for lowering the Child Mortality rate. However, there is limited evi...

Detecting pediatric appendicular fractures using artificial intelligence.

Revista da Associacao Medica Brasileira (1992)
OBJECTIVE: The primary objective was to assess the diagnostic accuracy of a deep learning-based artificial intelligence model for the detection of acute appendicular fractures in pediatric patients presenting with a recent history of trauma to the em...