AIMC Topic: Liver

Clear Filters Showing 61 to 70 of 589 articles

Automatic localization and deep convolutional generative adversarial network-based classification of focal liver lesions in computed tomography images: A preliminary study.

Journal of gastroenterology and hepatology
BACKGROUND AND AIM: Computed tomography of the abdomen exhibits subtle and complex features of liver lesions, subjectively interpreted by physicians. We developed a deep learning-based localization and classification (DLLC) system for focal liver les...

Development of a Deep Learning Model for Classification of Hepatic Steatosis from Clinical Standard Ultrasound.

Ultrasound in medicine & biology
OBJECTIVE: Early detection and monitoring of hepatic steatosis can help establish appropriate preventative measures against progression to more advanced disease. We aimed to develop a deep learning (DL) program for classification of hepatic steatosis...

High-precision MRI of liver and hepatic lesions on gadoxetic acid-enhanced hepatobiliary phase using a deep learning technique.

Japanese journal of radiology
PURPOSE: The purpose of this study was to investigate whether the high-precision magnetic resonance (MR) sequence using modified Fast 3D mode wheel and Precise IQ Engine (PIQE), that was collected in a wheel shape with sequential data filling in the ...

Exploring the potential of large language models in identifying metabolic dysfunction-associated steatotic liver disease: A comparative study of non-invasive tests and artificial intelligence-generated responses.

Liver international : official journal of the International Association for the Study of the Liver
BACKGROUND AND AIMS: This study sought to assess the capabilities of large language models (LLMs) in identifying clinically significant metabolic dysfunction-associated steatotic liver disease (MASLD).

Evaluating the Efficacy of Deep Learning Reconstruction in Reducing Radiation Dose for Computer-Aided Volumetry for Liver Tumor: A Phantom Study.

Journal of computer assisted tomography
OBJECTIVE: The purpose of this study was to compare radiation dose reduction capability for accurate liver tumor measurements of a computer-aided volumetry (CAD v ) software for filtered back projection (FBP), hybrid-type iterative reconstruction (IR...

Unbiased and reproducible liver MRI-PDFF estimation using a scan protocol-informed deep learning method.

European radiology
OBJECTIVE: To estimate proton density fat fraction (PDFF) from chemical shift encoded (CSE) MR images using a deep learning (DL)-based method that is precise and robust to different MR scanners and acquisition echo times (TEs).

Clinical validation of an AI-based pathology tool for scoring of metabolic dysfunction-associated steatohepatitis.

Nature medicine
Metabolic dysfunction-associated steatohepatitis (MASH) is a major cause of liver-related morbidity and mortality, yet treatment options are limited. Manual scoring of liver biopsies, currently the gold standard for clinical trial enrollment and endp...

A Multi-Task Based Deep Learning Framework With Landmark Detection for MRI Couinaud Segmentation.

IEEE journal of translational engineering in health and medicine
To achieve precise Couinaud liver segmentation in preoperative planning for hepatic surgery, accommodating the complex anatomy and significant variations, optimizing surgical approaches, reducing postoperative complications, and preserving liver func...

Machine Learning Models for Predicting Significant Liver Fibrosis in Patients with Severe Obesity and Nonalcoholic Fatty Liver Disease.

Obesity surgery
PURPOSE: Although noninvasive tests can be used to predict liver fibrosis, their accuracy is limited for patients with severe obesity and nonalcoholic fatty liver disease (NAFLD). We developed machine learning (ML) models to predict significant liver...

A novel approach to the cause of death identification-multi-strategy integration of multi-organ FTIR spectroscopy information using machine learning.

Talanta
Identifying the cause of death has always been a major focus and challenge in forensic practice and research. Traditional techniques for determining the causes of death are time-consuming, labor-intensive, have high professional barriers, and are vul...