This study aimed to explore the combined impacts of occupational noise and dust on hearing and extra-auditory functions and identify associated risk factors via machine learning techniques. Data from 14,145 workers (627 with occupational noise-induce...
BACKGROUND: Surrogate insulin resistance (IR) indices are simpler and more practical alternatives to insulin-based IR indicators for clinical use. This study explored the association between surrogate IR indices, including triglyceride-glucose index ...
In hyperuricaemic populations, multiple factors may contribute to impaired renal function. This study aimed to establish a machine learning-based model to identify characteristic factors related to renal impairment in hyperuricaemic patients, determi...
Upper extremity injuries in baseball players demand advanced prevention. Our study analyzed clinical features using machine learning techniques to provide precise and individualized injury risk assessment and prediction. We recruited 98 baseball play...
OBJECTIVE: Predicting healthcare demand is essential for effective resource allocation and planning. This study applies Andersen's Behavioral Model of Health Services Use, focusing on predisposing, enabling, and need factors, using data from the 2022...
BACKGROUND: Adequate bowel preparation is crucial for effective colonoscopy, especially in elderly patients who face a high risk of inadequate preparation. This study develops and validates a machine learning model to predict bowel preparation adequa...
BACKGROUND: The aim of this study was to develop and internally validate an interpretable machine learning (ML) model for predicting the risk of hepatocellular carcinoma (HCC) in patients with chronic hepatitis B (CHB) infection.
: This study aims to evaluate the predictive value of comprehensive data obtained in obstetric clinics for the detection of stillbirth and the predictive ability set of machine learning models for stillbirth. : The study retrospectively included all ...
BACKGROUND: Postpartum depression (PPD) is a significant public health issue. This study aimed to develop and validate machine learning (ML) models using biopsychosocial predictors to predict the risk of PPD for perinatal women and to provide several...
BACKGROUND: Radiation dermatitis (RD) is a significant side effect of radiotherapy experienced by breast cancer patients. Severe symptoms include desquamation or ulceration of irradiated skin, which impacts quality of life and increases healthcare co...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.