AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Logistic Models

Showing 61 to 70 of 1118 articles

Clear Filters

Convolutional long short-term memory neural network integrated with classifier in classifying type of asynchrony breathing in mechanically ventilated patients.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Asynchronous breathing (AB) occurs when a mechanically ventilated patient's breathing does not align with the mechanical ventilator (MV). Asynchrony can negatively impact recovery and outcome, and/or hinder MV management. A ...

Performance of machine learning models in predicting difficult laryngoscopy in the emergency department: a single-centre retrospective study comparing with conventional regression method.

BMC emergency medicine
BACKGROUND: Emergency endotracheal intubation is a critical skill for managing airway emergencies in the emergency department (ED). Accurate prediction of difficult laryngoscopy is essential for improving first-attempt success, minimizing complicatio...

[Prediction of depression symptoms in seniors and analysis of influencing factors based on explainable machine learning].

Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi
This study aims to construct a machine learning model to predict depression symptoms in the elderly and analyze the key influencing factors of depression in the elderly using the shapley additive interpretation (SHAP) method. Based on entries from ...

A predictive model for recurrence in patients with borderline ovarian tumor based on neural multi-task logistic regression.

BMC cancer
BACKGROUND: Effective management of patients with borderline ovarian tumor (BOT) requires the timely identification of those at a higher risk of recurrence. Artificial neural networks have been successfully used in many areas of clinical event predic...

Predicting preterm birth using machine learning methods.

Scientific reports
Preterm birth is a significant public health concern, given its correlation with neonatal mortality and morbidity. The aetiology of preterm birth is complex and multifactorial. The objective of this study was to develop and compare machine learning m...

Comparison of logistic regression and machine learning methods for predicting depression risks among disabled elderly individuals: results from the China Health and Retirement Longitudinal Study.

BMC psychiatry
BACKGROUND: Given the accelerated aging population in China, the number of disabled elderly individuals is increasing, and depression is a common mental disorder among older adults. This study aims to establish an effective model for predicting depre...

Developing a nomogram model for predicting non-obstructive azoospermia using machine learning techniques.

Scientific reports
Azoospermia, defined by the absence of sperm in the ejaculate, manifests as obstructive azoospermia (OA) or non-obstructive azoospermia (NOA). Reliable predictive models utilizing biomarkers could aid in clinical decision-making. This study included ...

Prediction of mortality risk in critically ill patients with systemic lupus erythematosus: a machine learning approach using the MIMIC-IV database.

Lupus science & medicine
OBJECTIVE: Early prediction of long-term outcomes in patients with systemic lupus erythematosus (SLE) remains a great challenge in clinical practice. Our study aims to develop and validate predictive models for the mortality risk.

Use of machine learning algorithms to construct models of symptom burden cluster risk in breast cancer patients undergoing chemotherapy.

Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
PURPOSE: To develop models using different machine learning algorithms to predict high-risk symptom burden clusters in breast cancer patients undergoing chemotherapy, and to determine an optimal model.