BACKGROUND: While there are established international consensuses on the delineation of pelvic lymph node regions (LNRs), significant inter- and intra-observer variabilities persist. Contouring these clinical target volumes for irradiation in pelvic ...
Respiration; international review of thoracic diseases
Jul 22, 2024
INTRODUCTION: The aim of the study was to establish an ultrasonographic radiomics machine learning model based on endobronchial ultrasound (EBUS) to assist in diagnosing benign and malignant mediastinal and hilar lymph nodes (LNs).
We systematically reviewed the application of artificial intelligence (AI) in predicting lymph node metastasis (LNM) in T1 colorectal cancer (CRC). Thirteen studies with 8417 patients were included. AI demonstrated high potential in predicting LNM wi...
To retrospectively assess the effectiveness of deep learning (DL) model, based on breast magnetic resonance imaging (MRI), in predicting preoperative lymphovascular invasion (LVI) status in patients diagnosed with invasive breast cancer who have nega...
OBJECTIVE: The objective of this study was to develop a deep learning-and-radiomics-based ultrasound nomogram for the evaluation of axillary lymph node (ALN) metastasis risk in breast cancer patients ≥ 75 years.
Journal of imaging informatics in medicine
Jun 27, 2024
Early and accurate detection of cervical lymph nodes is essential for the optimal management and staging of patients with head and neck malignancies. Pilot studies have demonstrated the potential for radiomic and artificial intelligence (AI) approach...
International journal of colorectal disease
Jun 26, 2024
BACKGROUND: The 8th AJCC TNM staging for non-metastatic lymph node-positive colon adenocarcinoma patients(NMLP-CA) stages solely by lymph node status, irrespective of the positivity of tumor deposits (TD). This study uses machine learning and Cox reg...
BACKGROUND: This study aims to develop a stacking model for accurately predicting axillary lymph node (ALN) response to neoadjuvant chemotherapy (NAC) using longitudinal MRI in breast cancer.
OBJECTIVES: This study investigated the diagnostic performance of dual-energy computed tomography (CT) and deep learning for the preoperative classification of equivocal lymph nodes (LNs) on CT images in thyroid cancer patients.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.