AIMC Topic: Lymph Nodes

Clear Filters Showing 81 to 90 of 374 articles

A pathologist-AI collaboration framework for enhancing diagnostic accuracies and efficiencies.

Nature biomedical engineering
In pathology, the deployment of artificial intelligence (AI) in clinical settings is constrained by limitations in data collection and in model transparency and interpretability. Here we describe a digital pathology framework, nuclei.io, that incorpo...

Smart scanning: automatic detection of superficially located lymph nodes using ultrasound - initial results.

RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin
Over the last few years, there has been an increasing focus on integrating artificial intelligence (AI) into existing imaging systems. This also applies to ultrasound. There are already applications for thyroid and breast lesions that enable AI-assis...

Diagnostic accuracy of CT-based radiomics and deep learning for predicting lymph node metastasis in esophageal cancer.

Clinical imaging
BACKGROUND: Esophageal cancer remains a global challenge due to late diagnoses and limited treatments. Lymph node metastasis (LNM) is crucial for prognosis, yet traditional diagnostics fall short. Integrating radiomics and deep learning (DL) with CT ...

Using machine learning to develop preoperative model for lymph node metastasis in patients with bladder urothelial carcinoma.

BMC cancer
BACKGROUND: Lymph node metastasis (LNM) is associated with worse prognosis in bladder urothelial carcinoma (BUC) patients. This study aimed to develop and validate machine learning (ML) models to preoperatively predict LNM in BUC patients treated wit...

Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis.

Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
OBJECTIVE: This study seeks to construct a machine learning model that merges clinical characteristics with ultrasound radiomic analysis-encompassing both the intratumoral and peritumoral-to predict the status of axillary lymph nodes in patients with...

A non-invasive preoperative prediction model for predicting axillary lymph node metastasis in breast cancer based on a machine learning approach: combining ultrasonographic parameters and breast gamma specific imaging features.

Radiation oncology (London, England)
BACKGROUND: The most common route of breast cancer metastasis is through the mammary lymphatic network. An accurate assessment of the axillary lymph node (ALN) burden before surgery can avoid unnecessary axillary surgery, consequently preventing surg...

A machine learning model for predicting the lymph node metastasis of early gastric cancer not meeting the endoscopic curability criteria.

Gastric cancer : official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association
BACKGROUND: We developed a machine learning (ML) model to predict the risk of lymph node metastasis (LNM) in patients with early gastric cancer (EGC) who did not meet the existing Japanese endoscopic curability criteria and compared its performance w...

A deep learning-based radiomics model for predicting lymph node status from lung adenocarcinoma.

BMC medical imaging
OBJECTIVES: At present, there are many limitations in the evaluation of lymph node metastasis of lung adenocarcinoma. Currently, there is a demand for a safe and accurate method to predict lymph node metastasis of lung cancer. In this study, radiomic...