AIMC Topic: Magnetic Resonance Imaging

Clear Filters Showing 381 to 390 of 6203 articles

Ensemble fuzzy deep learning for brain tumor detection.

Scientific reports
This research presents a novel ensemble fuzzy deep learning approach for brain Magnetic Resonance Imaging (MRI) analysis, aiming to improve the segmentation of brain tissues and abnormalities. The method integrates multiple components, including dive...

Characterizing Brain-Cardiovascular Aging Using Multiorgan Imaging and Machine Learning.

The Journal of neuroscience : the official journal of the Society for Neuroscience
The structure and function of the brain and cardiovascular system change over the lifespan. In this study, we aim to establish the extent to which age-related changes in these two vital organs are linked. Utilizing normative models and data from the ...

Comparison of surgical approaches to the hippocampal formation with artificial intelligence.

Neurosurgical review
The relatively complex functional anatomy of the mediobasal temporal region makes surgical approaches to this area challenging. Several studies describe various surgical approaches, along with their combinations and modifications, to reach lesions of...

Automated quantification of brain PET in PET/CT using deep learning-based CT-to-MR translation: a feasibility study.

European journal of nuclear medicine and molecular imaging
PURPOSE: Quantitative analysis of PET images in brain PET/CT relies on MRI-derived regions of interest (ROIs). However, the pairs of PET/CT and MR images are not always available, and their alignment is challenging if their acquisition times differ c...

A simple clustering approach to map the human brain's cortical semantic network organization during task.

NeuroImage
Constructing task-state large-scale brain networks can enhance our understanding of the organization of brain functions during cognitive tasks. The primary goal of brain network partitioning is to cluster functionally homogeneous brain regions. Howev...

Comparative analysis for accurate multi-classification of brain tumor based on significant deep learning models.

Computers in biology and medicine
Brain tumours are a significant health concern, often resulting in severe cognitive and physiological impairments. Accurate detection and classification of brain tumours, including glioma, meningioma, and pituitary tumours, are crucial for effective ...

Exploring the potential performance of 0.2 T low-field unshielded MRI scanner using deep learning techniques.

Magma (New York, N.Y.)
OBJECTIVE: Using deep learning-based techniques to overcome physical limitations and explore the potential performance of 0.2 T low-field unshielded MRI in terms of imaging quality and speed.

A systematic literature review of machine learning techniques for the detection of attention-deficit/hyperactivity disorder using MRI and/or EEG data.

Neuroscience
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental condition common in teenagers across the globe. Neuroimaging and Machine Learning (ML) advancements have revolutionized its diagnosis and treatment approaches. Although, the rese...

Accuracy of artificial intelligence in detecting tumor bone metastases: a systematic review and meta-analysis.

BMC cancer
BACKGROUND: Bone metastases (BM) represent a prevalent complication of tumors. Early and accurate diagnosis, however, is a significant hurdle for radiologists. Recently, artificial intelligence (AI) has emerged as a valuable tool to assist radiologis...

The development of an artificial intelligence auto-segmentation tool for 3D volumetric analysis of vestibular schwannomas.

Scientific reports
Linear and volumetric analysis are the typical methods to measure tumor size. 3D volumetric analysis has risen in popularity; however, this is very time and labor intensive limiting its implementation in clinical practice. This study aims to show tha...