AIMC Topic: Magnetic Resonance Imaging

Clear Filters Showing 411 to 420 of 6205 articles

Comparative analysis of machine learning models for predicting pathological complete response to neoadjuvant chemotherapy in breast cancer: An MRI radiomics approach.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: The aim of this work is to compare different machine learning models for predicting pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer using radiomics features from dynamic contrast-enhanced magnetic reso...

Deep learning-based quick MLC sequencing for MRI-guided online adaptive radiotherapy: a feasibility study for pancreatic cancer patients.

Physics in medicine and biology
One bottleneck of magnetic resonance imaging (MRI)-guided online adaptive radiotherapy is the time-consuming daily online replanning process. The current leaf sequencing method takes up to 10 min, with potential dosimetric degradation and small segme...

Diffusion-driven multi-modality medical image fusion.

Medical & biological engineering & computing
Multi-modality medical image fusion (MMIF) technology utilizes the complementarity of different modalities to provide more comprehensive diagnostic insights for clinical practice. Existing deep learning-based methods often focus on extracting the pri...

Cross prior Bayesian attention with correlated inception and residual learning for brain tumor classification using MR images (CB-CIRL Net).

Journal of neuroscience methods
BACKGROUND: Brain tumor classification from magnetic resonance (MR) images is crucial for early diagnosis and effective treatment planning. However, the homogeneity of tumors across different categories poses a challenge. Although, attention-based co...

Performance evaluation of ChatGPT-4.0 and Gemini on image-based neurosurgery board practice questions: A comparative analysis.

Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
INTRODUCTION: Artificial intelligence (AI) has gained significant attention in medicine, particularly in neurosurgery, where its potential is often discussed and occasionally feared. Large language models (LLMs), such as ChatGPT-4.0 (OpenAI) and Gemi...

Machine learning for the early prediction of long-term cognitive outcome in autoimmune encephalitis.

Journal of psychosomatic research
BACKGROUND AND OBJECTIVE: Autoimmune encephalitis (AE) is an immune-mediated disease. Some patients experience persistent cognitive deficits despite receiving immunotherapy. We aimed to develop a prediction model for long-term cognitive outcomes in p...

Review on computational methods for the detection and classification of Parkinson's Disease.

Computers in biology and medicine
BACKGROUND AND OBJECTIVE: The worldwide estimates reveal two-fold increase in incidence of Parkinson's disease (PD) over 25 years. The two-fold increased incidence and lack of proper treatment uplifted a compelling solicitude, nagging towards accurat...

Alzheimer's Disease detection and classification using optimized neural network.

Computers in biology and medicine
Alzheimer's disease (AD) is a degenerative neurological condition characterized by a progressive decline in cognitive abilities, resulting in memory impairment and limitations in performing daily tasks. Timely and precise identification of AD holds p...

A privacy-preserved horizontal federated learning for malignant glioma tumour detection using distributed data-silos.

PloS one
Malignant glioma is the uncontrollable growth of cells in the spinal cord and brain that look similar to the normal glial cells. The most essential part of the nervous system is glial cells, which support the brain's functioning prominently. However,...

Deformation registration based on reconstruction of brain MRI images with pathologies.

Medical & biological engineering & computing
Deformable registration between brain tumor images and brain atlas has been an important tool to facilitate pathological analysis. However, registration of images with tumors is challenging due to absent correspondences induced by the tumor. Furtherm...