AIMC Topic: Melanoma

Clear Filters Showing 211 to 220 of 348 articles

Serum markers improve current prediction of metastasis development in early-stage melanoma patients: a machine learning-based study.

Molecular oncology
Metastasis development represents an important threat for melanoma patients, even when diagnosed at early stages and upon removal of the primary tumor. In this scenario, determination of prognostic biomarkers would be of great interest. Serum contain...

An Efficient Skin Cancer Diagnostic System Using Bendlet Transform and Support Vector Machine.

Anais da Academia Brasileira de Ciencias
Skin is the outermost and largest organ of the human body that protects us from the external agents. Among the various types of diseases affecting the skin, melanoma (skin cancer) is the most dangerous and deadliest disease. Though it is one of the d...

Technological advances for the detection of melanoma: Advances in diagnostic techniques.

Journal of the American Academy of Dermatology
Managing the balance between accurately identifying early stage melanomas while avoiding obtaining biopsy specimens of benign lesions (ie, overbiopsy) is the major challenge of melanoma detection. Decision making can be especially difficult in patien...

New Auxiliary Function with Properties in Nonsmooth Global Optimization for Melanoma Skin Cancer Segmentation.

BioMed research international
In this paper, an algorithm is introduced to solve the global optimization problem for melanoma skin cancer segmentation. The algorithm is based on the smoothing of an auxiliary function that is constructed using a known local minimizer and smoothed ...

A machine learning algorithm for simulating immunohistochemistry: development of SOX10 virtual IHC and evaluation on primarily melanocytic neoplasms.

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Immunohistochemistry (IHC) is a diagnostic technique used throughout pathology. A machine learning algorithm that could predict individual cell immunophenotype based on hematoxylin and eosin (H&E) staining would save money, time, and reduce tissue co...

Semi-Supervised Nests of Melanocytes Segmentation Method Using Convolutional Autoencoders.

Sensors (Basel, Switzerland)
In this research, we present a semi-supervised segmentation solution using convolutional autoencoders to solve the problem of segmentation tasks having a small number of ground-truth images. We evaluate the proposed deep network architecture for the ...

DePicT Melanoma Deep-CLASS: a deep convolutional neural networks approach to classify skin lesion images.

BMC bioinformatics
BACKGROUND: Melanoma results in the vast majority of skin cancer deaths during the last decades, even though this disease accounts for only one percent of all skin cancers' instances. The survival rates of melanoma from early to terminal stages is mo...