AIMC Topic: Metabolic Syndrome

Clear Filters Showing 11 to 20 of 82 articles

Prediction of depression risk in middle-aged and elderly Cardiovascular-Kidney-Metabolic syndrome patients by social and environmental determinants of health: an interpretable machine learning approach using longitudinal data from China.

Journal of health, population, and nutrition
BACKGROUND: Cardiovascular-Kidney-Metabolic (CKM) syndrome is a systemic disease characterized by pathophysiological interactions between the cardiovascular system, chronic kidney disease, and metabolic risk factors. In China, the prevalence of CKM i...

Effect of visceral fat on onset of metabolic syndrome.

Scientific reports
This study analysed the effects of visceral fat on metabolic syndrome (MetS) and developed an algorithm to predict its onset using health examination data from the Iwaki Health Promotion Project in Japan. The dataset included 213 cases of MetS onset ...

Development and validation of a predictive model for depression in patients with advanced stage of cardiovascular-kidney-metabolic syndrome.

Journal of affective disorders
Depression is highly prevalent among patients with chronic disease advanced and with poor clinical outcomes. However, effective tools for identifying individuals at risk remain limited. This study aimed to develop and validate a predictive model for ...

Assessing the association of multi-environmental chemical exposures on metabolic syndrome: A machine learning approach.

Environment international
Metabolic syndrome (MetS) is a major global public health concern due to its rising prevalence and association with increased risks of cardiovascular disease and type 2 diabetes. Emerging evidence suggests that environmental chemical exposures may pl...

Development and validation of a machine learning model for predicting pediatric metabolic syndrome using anthropometric and bioelectrical impedance parameters.

International journal of obesity (2005)
OBJECTIVE: Metabolic syndrome (MS) is a risk factor for cardiovascular diseases, and its prevalence is increasing among children and adolescents. This study developed a machine learning model to predict MS using anthropometric and bioelectrical imped...

Gender Differences in Predicting Metabolic Syndrome Among Hospital Employees Using Machine Learning Models: A Population-Based Study.

The journal of nursing research : JNR
BACKGROUND: Metabolic syndrome (MetS) is a complex condition that captures several markers of dysregulation, including obesity, elevated blood glucose levels, dyslipidemia and hypertension. Using an approach to early prediction of MetS risk in hospit...

Deep-learning analysis of greenspace and metabolic syndrome: A street-view and remote-sensing approach.

Environmental research
Evidence linking greenspace exposure to metabolic syndrome (MetS) remains sparse and inconsistent. This exploratory study evaluate the relationship between green visibility index (GVI) and normalized difference vegetation index (NDVI) with MetS preva...