AIMC Topic: Multiple Pulmonary Nodules

Clear Filters Showing 71 to 80 of 142 articles

Lung nodule detection in chest X-rays using synthetic ground-truth data comparing CNN-based diagnosis to human performance.

Scientific reports
We present a method to generate synthetic thorax radiographs with realistic nodules from CT scans, and a perfect ground truth knowledge. We evaluated the detection performance of nine radiologists and two convolutional neural networks in a reader stu...

Prediction model for malignant pulmonary nodules based on cfMeDIP-seq and machine learning.

Cancer science
Cell-free methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq) is a new bisulfite-free technique, which can detect the whole-genome methylation of blood cell-free DNA (cfDNA). Using this technique, we identified differentia...

Deep Learning for Malignancy Risk Estimation of Pulmonary Nodules Detected at Low-Dose Screening CT.

Radiology
Background Accurate estimation of the malignancy risk of pulmonary nodules at chest CT is crucial for optimizing management in lung cancer screening. Purpose To develop and validate a deep learning (DL) algorithm for malignancy risk estimation of pul...

Proposing a deep learning-based method for improving the diagnostic certainty of pulmonary nodules in CT scan of chest.

European radiology
OBJECTIVE: To compare the performance of a deep learning (DL)-based method for diagnosing pulmonary nodules compared with radiologists' diagnostic approach in computed tomography (CT) of the chest.

Development and validation of a clinically applicable deep learning strategy (HONORS) for pulmonary nodule classification at CT: A retrospective multicentre study.

Lung cancer (Amsterdam, Netherlands)
PURPOSE: To propose a practical strategy for the clinical application of deep learning algorithm, i.e., Hierarchical-Ordered Network-ORiented Strategy (HONORS), and a new approach to pulmonary nodule classification in various clinical scenarios, i.e....

Development and Validation of Machine Learning-based Model for the Prediction of Malignancy in Multiple Pulmonary Nodules: Analysis from Multicentric Cohorts.

Clinical cancer research : an official journal of the American Association for Cancer Research
PURPOSE: Nodule evaluation is challenging and critical to diagnose multiple pulmonary nodules (MPNs). We aimed to develop and validate a machine learning-based model to estimate the malignant probability of MPNs to guide decision-making.